Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x-2\right)}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}-\frac{2\left(x+1\right)+v}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of v+2\left(x+1\right) and x-2 is \left(x-2\right)\left(2\left(x+1\right)+v\right). Multiply \frac{3}{v+2\left(x+1\right)} times \frac{x-2}{x-2}. Multiply \frac{1}{x-2} times \frac{2\left(x+1\right)+v}{2\left(x+1\right)+v}.
\frac{3\left(x-2\right)-\left(2\left(x+1\right)+v\right)}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}
Since \frac{3\left(x-2\right)}{\left(x-2\right)\left(2\left(x+1\right)+v\right)} and \frac{2\left(x+1\right)+v}{\left(x-2\right)\left(2\left(x+1\right)+v\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-6-2-2x-v}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}
Do the multiplications in 3\left(x-2\right)-\left(2\left(x+1\right)+v\right).
\frac{x-8-v}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}
Combine like terms in 3x-6-2-2x-v.
\frac{x-8-v}{2x^{2}+vx-2x-2v-4}
Expand \left(x-2\right)\left(2\left(x+1\right)+v\right).
\frac{3\left(x-2\right)}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}-\frac{2\left(x+1\right)+v}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of v+2\left(x+1\right) and x-2 is \left(x-2\right)\left(2\left(x+1\right)+v\right). Multiply \frac{3}{v+2\left(x+1\right)} times \frac{x-2}{x-2}. Multiply \frac{1}{x-2} times \frac{2\left(x+1\right)+v}{2\left(x+1\right)+v}.
\frac{3\left(x-2\right)-\left(2\left(x+1\right)+v\right)}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}
Since \frac{3\left(x-2\right)}{\left(x-2\right)\left(2\left(x+1\right)+v\right)} and \frac{2\left(x+1\right)+v}{\left(x-2\right)\left(2\left(x+1\right)+v\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-6-2-2x-v}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}
Do the multiplications in 3\left(x-2\right)-\left(2\left(x+1\right)+v\right).
\frac{x-8-v}{\left(x-2\right)\left(2\left(x+1\right)+v\right)}
Combine like terms in 3x-6-2-2x-v.
\frac{x-8-v}{2x^{2}+vx-2x-2v-4}
Expand \left(x-2\right)\left(2\left(x+1\right)+v\right).