Evaluate
\frac{2}{p-3r}
Expand
\frac{6}{3p-9r}
Share
Copied to clipboard
\frac{3}{p+3r}-\frac{p-15r}{\left(p-3r\right)\left(p+3r\right)}
Factor p^{2}-9r^{2}.
\frac{3\left(p-3r\right)}{\left(p-3r\right)\left(p+3r\right)}-\frac{p-15r}{\left(p-3r\right)\left(p+3r\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p+3r and \left(p-3r\right)\left(p+3r\right) is \left(p-3r\right)\left(p+3r\right). Multiply \frac{3}{p+3r} times \frac{p-3r}{p-3r}.
\frac{3\left(p-3r\right)-\left(p-15r\right)}{\left(p-3r\right)\left(p+3r\right)}
Since \frac{3\left(p-3r\right)}{\left(p-3r\right)\left(p+3r\right)} and \frac{p-15r}{\left(p-3r\right)\left(p+3r\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3p-9r-p+15r}{\left(p-3r\right)\left(p+3r\right)}
Do the multiplications in 3\left(p-3r\right)-\left(p-15r\right).
\frac{2p+6r}{\left(p-3r\right)\left(p+3r\right)}
Combine like terms in 3p-9r-p+15r.
\frac{2\left(p+3r\right)}{\left(p-3r\right)\left(p+3r\right)}
Factor the expressions that are not already factored in \frac{2p+6r}{\left(p-3r\right)\left(p+3r\right)}.
\frac{2}{p-3r}
Cancel out p+3r in both numerator and denominator.
\frac{3}{p+3r}-\frac{p-15r}{\left(p-3r\right)\left(p+3r\right)}
Factor p^{2}-9r^{2}.
\frac{3\left(p-3r\right)}{\left(p-3r\right)\left(p+3r\right)}-\frac{p-15r}{\left(p-3r\right)\left(p+3r\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p+3r and \left(p-3r\right)\left(p+3r\right) is \left(p-3r\right)\left(p+3r\right). Multiply \frac{3}{p+3r} times \frac{p-3r}{p-3r}.
\frac{3\left(p-3r\right)-\left(p-15r\right)}{\left(p-3r\right)\left(p+3r\right)}
Since \frac{3\left(p-3r\right)}{\left(p-3r\right)\left(p+3r\right)} and \frac{p-15r}{\left(p-3r\right)\left(p+3r\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3p-9r-p+15r}{\left(p-3r\right)\left(p+3r\right)}
Do the multiplications in 3\left(p-3r\right)-\left(p-15r\right).
\frac{2p+6r}{\left(p-3r\right)\left(p+3r\right)}
Combine like terms in 3p-9r-p+15r.
\frac{2\left(p+3r\right)}{\left(p-3r\right)\left(p+3r\right)}
Factor the expressions that are not already factored in \frac{2p+6r}{\left(p-3r\right)\left(p+3r\right)}.
\frac{2}{p-3r}
Cancel out p+3r in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}