Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(n-6\right)}{\left(n-6\right)\left(n-2\right)}-\frac{6n\left(n-2\right)}{\left(n-6\right)\left(n-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-2 and n-6 is \left(n-6\right)\left(n-2\right). Multiply \frac{3}{n-2} times \frac{n-6}{n-6}. Multiply \frac{6n}{n-6} times \frac{n-2}{n-2}.
\frac{3\left(n-6\right)-6n\left(n-2\right)}{\left(n-6\right)\left(n-2\right)}
Since \frac{3\left(n-6\right)}{\left(n-6\right)\left(n-2\right)} and \frac{6n\left(n-2\right)}{\left(n-6\right)\left(n-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3n-18-6n^{2}+12n}{\left(n-6\right)\left(n-2\right)}
Do the multiplications in 3\left(n-6\right)-6n\left(n-2\right).
\frac{15n-18-6n^{2}}{\left(n-6\right)\left(n-2\right)}
Combine like terms in 3n-18-6n^{2}+12n.
\frac{15n-18-6n^{2}}{n^{2}-8n+12}
Expand \left(n-6\right)\left(n-2\right).