Solve for n
n=9
n=-9
Share
Copied to clipboard
27\times 3=nn
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 27n, the least common multiple of n,27.
27\times 3=n^{2}
Multiply n and n to get n^{2}.
81=n^{2}
Multiply 27 and 3 to get 81.
n^{2}=81
Swap sides so that all variable terms are on the left hand side.
n=9 n=-9
Take the square root of both sides of the equation.
27\times 3=nn
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 27n, the least common multiple of n,27.
27\times 3=n^{2}
Multiply n and n to get n^{2}.
81=n^{2}
Multiply 27 and 3 to get 81.
n^{2}=81
Swap sides so that all variable terms are on the left hand side.
n^{2}-81=0
Subtract 81 from both sides.
n=\frac{0±\sqrt{0^{2}-4\left(-81\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-81\right)}}{2}
Square 0.
n=\frac{0±\sqrt{324}}{2}
Multiply -4 times -81.
n=\frac{0±18}{2}
Take the square root of 324.
n=9
Now solve the equation n=\frac{0±18}{2} when ± is plus. Divide 18 by 2.
n=-9
Now solve the equation n=\frac{0±18}{2} when ± is minus. Divide -18 by 2.
n=9 n=-9
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}