Solve for c
c = \frac{27}{10} = 2\frac{7}{10} = 2.7
Share
Copied to clipboard
9c\times 3-\left(9c-27\right)=c\times 28
Variable c cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by 9c\left(c-3\right), the least common multiple of c-3,c,9c-27.
27c-\left(9c-27\right)=c\times 28
Multiply 9 and 3 to get 27.
27c-9c+27=c\times 28
To find the opposite of 9c-27, find the opposite of each term.
18c+27=c\times 28
Combine 27c and -9c to get 18c.
18c+27-c\times 28=0
Subtract c\times 28 from both sides.
-10c+27=0
Combine 18c and -c\times 28 to get -10c.
-10c=-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
c=\frac{-27}{-10}
Divide both sides by -10.
c=\frac{27}{10}
Fraction \frac{-27}{-10} can be simplified to \frac{27}{10} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}