Solve for c
c=\frac{3}{2e^{2}}\approx 0.203002925
Share
Copied to clipboard
3=2e^{4-2}c
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by c.
3=2e^{2}c
Subtract 2 from 4 to get 2.
2e^{2}c=3
Swap sides so that all variable terms are on the left hand side.
\frac{2e^{2}c}{2e^{2}}=\frac{3}{2e^{2}}
Divide both sides by 2e^{2}.
c=\frac{3}{2e^{2}}
Dividing by 2e^{2} undoes the multiplication by 2e^{2}.
c=\frac{3}{2e^{2}}\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}