Solve for b
b=-\frac{3c}{4-cd}
c\neq 0\text{ and }d\neq \frac{4}{c}
Solve for c
c=-\frac{4b}{3-bd}
b\neq 0\text{ and }\left(d=0\text{ or }b\neq \frac{3}{d}\right)
Share
Copied to clipboard
c\times 3=bcd-b\times 4
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bc, the least common multiple of b,c.
bcd-b\times 4=c\times 3
Swap sides so that all variable terms are on the left hand side.
bcd-4b=c\times 3
Multiply -1 and 4 to get -4.
\left(cd-4\right)b=c\times 3
Combine all terms containing b.
\left(cd-4\right)b=3c
The equation is in standard form.
\frac{\left(cd-4\right)b}{cd-4}=\frac{3c}{cd-4}
Divide both sides by cd-4.
b=\frac{3c}{cd-4}
Dividing by cd-4 undoes the multiplication by cd-4.
b=\frac{3c}{cd-4}\text{, }b\neq 0
Variable b cannot be equal to 0.
c\times 3=bcd-b\times 4
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bc, the least common multiple of b,c.
c\times 3-bcd=-b\times 4
Subtract bcd from both sides.
c\times 3-bcd=-4b
Multiply -1 and 4 to get -4.
\left(3-bd\right)c=-4b
Combine all terms containing c.
\frac{\left(3-bd\right)c}{3-bd}=-\frac{4b}{3-bd}
Divide both sides by 3-bd.
c=-\frac{4b}{3-bd}
Dividing by 3-bd undoes the multiplication by 3-bd.
c=-\frac{4b}{3-bd}\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}