Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)}+\frac{2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-4 and a+3 is \left(a-4\right)\left(a+3\right). Multiply \frac{3}{a-4} times \frac{a+3}{a+3}. Multiply \frac{2}{a+3} times \frac{a-4}{a-4}.
\frac{3\left(a+3\right)+2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Since \frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)} and \frac{2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{3a+9+2a-8}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Do the multiplications in 3\left(a+3\right)+2\left(a-4\right).
\frac{5a+1}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Combine like terms in 3a+9+2a-8.
\frac{5a+1}{\left(a-4\right)\left(a+3\right)}-\frac{21}{\left(a-4\right)\left(a+3\right)}
Factor a^{2}-a-12.
\frac{5a+1-21}{\left(a-4\right)\left(a+3\right)}
Since \frac{5a+1}{\left(a-4\right)\left(a+3\right)} and \frac{21}{\left(a-4\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5a-20}{\left(a-4\right)\left(a+3\right)}
Combine like terms in 5a+1-21.
\frac{5\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{5a-20}{\left(a-4\right)\left(a+3\right)}.
\frac{5}{a+3}
Cancel out a-4 in both numerator and denominator.