Evaluate
\frac{3\left(a^{2}-2a+8\right)}{\left(a-2\right)\left(a^{2}+4\right)}
Factor
\frac{3\left(a^{2}-2a+8\right)}{\left(a-2\right)\left(a^{2}+4\right)}
Share
Copied to clipboard
\frac{3\left(a^{2}+4\right)}{\left(a-2\right)\left(a^{2}+4\right)}-\frac{6\left(a-2\right)}{\left(a-2\right)\left(a^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a^{2}+4 is \left(a-2\right)\left(a^{2}+4\right). Multiply \frac{3}{a-2} times \frac{a^{2}+4}{a^{2}+4}. Multiply \frac{6}{a^{2}+4} times \frac{a-2}{a-2}.
\frac{3\left(a^{2}+4\right)-6\left(a-2\right)}{\left(a-2\right)\left(a^{2}+4\right)}
Since \frac{3\left(a^{2}+4\right)}{\left(a-2\right)\left(a^{2}+4\right)} and \frac{6\left(a-2\right)}{\left(a-2\right)\left(a^{2}+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}+12-6a+12}{\left(a-2\right)\left(a^{2}+4\right)}
Do the multiplications in 3\left(a^{2}+4\right)-6\left(a-2\right).
\frac{3a^{2}+24-6a}{\left(a-2\right)\left(a^{2}+4\right)}
Combine like terms in 3a^{2}+12-6a+12.
\frac{3a^{2}+24-6a}{a^{3}-2a^{2}+4a-8}
Expand \left(a-2\right)\left(a^{2}+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}