Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(a^{2}+4\right)}{\left(a-2\right)\left(a^{2}+4\right)}-\frac{6\left(a-2\right)}{\left(a-2\right)\left(a^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a^{2}+4 is \left(a-2\right)\left(a^{2}+4\right). Multiply \frac{3}{a-2} times \frac{a^{2}+4}{a^{2}+4}. Multiply \frac{6}{a^{2}+4} times \frac{a-2}{a-2}.
\frac{3\left(a^{2}+4\right)-6\left(a-2\right)}{\left(a-2\right)\left(a^{2}+4\right)}
Since \frac{3\left(a^{2}+4\right)}{\left(a-2\right)\left(a^{2}+4\right)} and \frac{6\left(a-2\right)}{\left(a-2\right)\left(a^{2}+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}+12-6a+12}{\left(a-2\right)\left(a^{2}+4\right)}
Do the multiplications in 3\left(a^{2}+4\right)-6\left(a-2\right).
\frac{3a^{2}+24-6a}{\left(a-2\right)\left(a^{2}+4\right)}
Combine like terms in 3a^{2}+12-6a+12.
\frac{3a^{2}+24-6a}{a^{3}-2a^{2}+4a-8}
Expand \left(a-2\right)\left(a^{2}+4\right).