Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{\left(a+3\right)^{2}}+\frac{7}{\left(a-3\right)\left(a+3\right)}
Factor a^{2}+6a+9. Factor a^{2}-9.
\frac{3\left(a-3\right)}{\left(a-3\right)\left(a+3\right)^{2}}+\frac{7\left(a+3\right)}{\left(a-3\right)\left(a+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+3\right)^{2} and \left(a-3\right)\left(a+3\right) is \left(a-3\right)\left(a+3\right)^{2}. Multiply \frac{3}{\left(a+3\right)^{2}} times \frac{a-3}{a-3}. Multiply \frac{7}{\left(a-3\right)\left(a+3\right)} times \frac{a+3}{a+3}.
\frac{3\left(a-3\right)+7\left(a+3\right)}{\left(a-3\right)\left(a+3\right)^{2}}
Since \frac{3\left(a-3\right)}{\left(a-3\right)\left(a+3\right)^{2}} and \frac{7\left(a+3\right)}{\left(a-3\right)\left(a+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{3a-9+7a+21}{\left(a-3\right)\left(a+3\right)^{2}}
Do the multiplications in 3\left(a-3\right)+7\left(a+3\right).
\frac{10a+12}{\left(a-3\right)\left(a+3\right)^{2}}
Combine like terms in 3a-9+7a+21.
\frac{10a+12}{a^{3}+3a^{2}-9a-27}
Expand \left(a-3\right)\left(a+3\right)^{2}.