Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{a+2}-\frac{4}{a-2}-\frac{2a}{5a+4}
Combine a and 4a to get 5a.
\frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{4\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{3}{a+2} times \frac{a-2}{a-2}. Multiply \frac{4}{a-2} times \frac{a+2}{a+2}.
\frac{3\left(a-2\right)-4\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Since \frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{4\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a-6-4a-8}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Do the multiplications in 3\left(a-2\right)-4\left(a+2\right).
\frac{-a-14}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Combine like terms in 3a-6-4a-8.
\frac{\left(-a-14\right)\left(5a+4\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}-\frac{2a\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right) and 5a+4 is \left(a-2\right)\left(a+2\right)\left(5a+4\right). Multiply \frac{-a-14}{\left(a-2\right)\left(a+2\right)} times \frac{5a+4}{5a+4}. Multiply \frac{2a}{5a+4} times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{\left(-a-14\right)\left(5a+4\right)-2a\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Since \frac{\left(-a-14\right)\left(5a+4\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)} and \frac{2a\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-5a^{2}-4a-70a-56-2a^{3}-4a^{2}+4a^{2}+8a}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Do the multiplications in \left(-a-14\right)\left(5a+4\right)-2a\left(a-2\right)\left(a+2\right).
\frac{-5a^{2}-66a-56-2a^{3}}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Combine like terms in -5a^{2}-4a-70a-56-2a^{3}-4a^{2}+4a^{2}+8a.
\frac{-5a^{2}-66a-56-2a^{3}}{5a^{3}+4a^{2}-20a-16}
Expand \left(a-2\right)\left(a+2\right)\left(5a+4\right).