Evaluate
-\frac{2a^{3}+5a^{2}+66a+56}{\left(5a+4\right)\left(a^{2}-4\right)}
Differentiate w.r.t. a
\frac{17a^{4}+740a^{3}+1300a^{2}+608a-64}{\left(\left(5a+4\right)\left(a^{2}-4\right)\right)^{2}}
Share
Copied to clipboard
\frac{3}{a+2}-\frac{4}{a-2}-\frac{2a}{5a+4}
Combine a and 4a to get 5a.
\frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{4\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{3}{a+2} times \frac{a-2}{a-2}. Multiply \frac{4}{a-2} times \frac{a+2}{a+2}.
\frac{3\left(a-2\right)-4\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Since \frac{3\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{4\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a-6-4a-8}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Do the multiplications in 3\left(a-2\right)-4\left(a+2\right).
\frac{-a-14}{\left(a-2\right)\left(a+2\right)}-\frac{2a}{5a+4}
Combine like terms in 3a-6-4a-8.
\frac{\left(-a-14\right)\left(5a+4\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}-\frac{2a\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right) and 5a+4 is \left(a-2\right)\left(a+2\right)\left(5a+4\right). Multiply \frac{-a-14}{\left(a-2\right)\left(a+2\right)} times \frac{5a+4}{5a+4}. Multiply \frac{2a}{5a+4} times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{\left(-a-14\right)\left(5a+4\right)-2a\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Since \frac{\left(-a-14\right)\left(5a+4\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)} and \frac{2a\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-5a^{2}-4a-70a-56-2a^{3}-4a^{2}+4a^{2}+8a}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Do the multiplications in \left(-a-14\right)\left(5a+4\right)-2a\left(a-2\right)\left(a+2\right).
\frac{-5a^{2}-66a-56-2a^{3}}{\left(a-2\right)\left(a+2\right)\left(5a+4\right)}
Combine like terms in -5a^{2}-4a-70a-56-2a^{3}-4a^{2}+4a^{2}+8a.
\frac{-5a^{2}-66a-56-2a^{3}}{5a^{3}+4a^{2}-20a-16}
Expand \left(a-2\right)\left(a+2\right)\left(5a+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}