Evaluate
-\frac{1}{18}\approx -0.055555556
Factor
-\frac{1}{18} = -0.05555555555555555
Share
Copied to clipboard
\frac{1}{3}\left(-\frac{4}{8}+\frac{5}{15}\right)
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{1}{3}\left(-\frac{1}{2}+\frac{5}{15}\right)
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{1}{3}\left(-\frac{1}{2}+\frac{1}{3}\right)
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
\frac{1}{3}\left(-\frac{3}{6}+\frac{2}{6}\right)
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{1}{3}\times \frac{-3+2}{6}
Since -\frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{1}{3}\left(-\frac{1}{6}\right)
Add -3 and 2 to get -1.
\frac{1\left(-1\right)}{3\times 6}
Multiply \frac{1}{3} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{18}
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 6}.
-\frac{1}{18}
Fraction \frac{-1}{18} can be rewritten as -\frac{1}{18} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}