Evaluate
\frac{5a^{3}+142a^{2}+12a-9}{3a\left(5a-3\right)\left(25a-1\right)}
Expand
\frac{5a^{3}+142a^{2}+12a-9}{3\left(5a-3\right)\left(25a^{2}-a\right)}
Share
Copied to clipboard
\frac{3}{9}+\frac{2}{5a-3}+\frac{1-8a^{2}}{25a^{2}-a}
Multiply a and a to get a^{2}.
\frac{1}{3}+\frac{2}{5a-3}+\frac{1-8a^{2}}{25a^{2}-a}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{5a-3}{3\left(5a-3\right)}+\frac{2\times 3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5a-3 is 3\left(5a-3\right). Multiply \frac{1}{3} times \frac{5a-3}{5a-3}. Multiply \frac{2}{5a-3} times \frac{3}{3}.
\frac{5a-3+2\times 3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Since \frac{5a-3}{3\left(5a-3\right)} and \frac{2\times 3}{3\left(5a-3\right)} have the same denominator, add them by adding their numerators.
\frac{5a-3+6}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Do the multiplications in 5a-3+2\times 3.
\frac{5a+3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Combine like terms in 5a-3+6.
\frac{5a+3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{a\left(25a-1\right)}
Factor 25a^{2}-a.
\frac{\left(5a+3\right)a\left(25a-1\right)}{3a\left(5a-3\right)\left(25a-1\right)}+\frac{\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(5a-3\right) and a\left(25a-1\right) is 3a\left(5a-3\right)\left(25a-1\right). Multiply \frac{5a+3}{3\left(5a-3\right)} times \frac{a\left(25a-1\right)}{a\left(25a-1\right)}. Multiply \frac{1-8a^{2}}{a\left(25a-1\right)} times \frac{3\left(5a-3\right)}{3\left(5a-3\right)}.
\frac{\left(5a+3\right)a\left(25a-1\right)+\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)}
Since \frac{\left(5a+3\right)a\left(25a-1\right)}{3a\left(5a-3\right)\left(25a-1\right)} and \frac{\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)} have the same denominator, add them by adding their numerators.
\frac{125a^{3}-5a^{2}+75a^{2}-3a+15a-9-120a^{3}+72a^{2}}{3a\left(5a-3\right)\left(25a-1\right)}
Do the multiplications in \left(5a+3\right)a\left(25a-1\right)+\left(1-8a^{2}\right)\times 3\left(5a-3\right).
\frac{5a^{3}+142a^{2}+12a-9}{3a\left(5a-3\right)\left(25a-1\right)}
Combine like terms in 125a^{3}-5a^{2}+75a^{2}-3a+15a-9-120a^{3}+72a^{2}.
\frac{5a^{3}+142a^{2}+12a-9}{375a^{3}-240a^{2}+9a}
Expand 3a\left(5a-3\right)\left(25a-1\right).
\frac{3}{9}+\frac{2}{5a-3}+\frac{1-8a^{2}}{25a^{2}-a}
Multiply a and a to get a^{2}.
\frac{1}{3}+\frac{2}{5a-3}+\frac{1-8a^{2}}{25a^{2}-a}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{5a-3}{3\left(5a-3\right)}+\frac{2\times 3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5a-3 is 3\left(5a-3\right). Multiply \frac{1}{3} times \frac{5a-3}{5a-3}. Multiply \frac{2}{5a-3} times \frac{3}{3}.
\frac{5a-3+2\times 3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Since \frac{5a-3}{3\left(5a-3\right)} and \frac{2\times 3}{3\left(5a-3\right)} have the same denominator, add them by adding their numerators.
\frac{5a-3+6}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Do the multiplications in 5a-3+2\times 3.
\frac{5a+3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Combine like terms in 5a-3+6.
\frac{5a+3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{a\left(25a-1\right)}
Factor 25a^{2}-a.
\frac{\left(5a+3\right)a\left(25a-1\right)}{3a\left(5a-3\right)\left(25a-1\right)}+\frac{\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(5a-3\right) and a\left(25a-1\right) is 3a\left(5a-3\right)\left(25a-1\right). Multiply \frac{5a+3}{3\left(5a-3\right)} times \frac{a\left(25a-1\right)}{a\left(25a-1\right)}. Multiply \frac{1-8a^{2}}{a\left(25a-1\right)} times \frac{3\left(5a-3\right)}{3\left(5a-3\right)}.
\frac{\left(5a+3\right)a\left(25a-1\right)+\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)}
Since \frac{\left(5a+3\right)a\left(25a-1\right)}{3a\left(5a-3\right)\left(25a-1\right)} and \frac{\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)} have the same denominator, add them by adding their numerators.
\frac{125a^{3}-5a^{2}+75a^{2}-3a+15a-9-120a^{3}+72a^{2}}{3a\left(5a-3\right)\left(25a-1\right)}
Do the multiplications in \left(5a+3\right)a\left(25a-1\right)+\left(1-8a^{2}\right)\times 3\left(5a-3\right).
\frac{5a^{3}+142a^{2}+12a-9}{3a\left(5a-3\right)\left(25a-1\right)}
Combine like terms in 125a^{3}-5a^{2}+75a^{2}-3a+15a-9-120a^{3}+72a^{2}.
\frac{5a^{3}+142a^{2}+12a-9}{375a^{3}-240a^{2}+9a}
Expand 3a\left(5a-3\right)\left(25a-1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}