Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{9}+\frac{2}{5a-3}+\frac{1-8a^{2}}{25a^{2}-a}
Multiply a and a to get a^{2}.
\frac{1}{3}+\frac{2}{5a-3}+\frac{1-8a^{2}}{25a^{2}-a}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{5a-3}{3\left(5a-3\right)}+\frac{2\times 3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5a-3 is 3\left(5a-3\right). Multiply \frac{1}{3} times \frac{5a-3}{5a-3}. Multiply \frac{2}{5a-3} times \frac{3}{3}.
\frac{5a-3+2\times 3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Since \frac{5a-3}{3\left(5a-3\right)} and \frac{2\times 3}{3\left(5a-3\right)} have the same denominator, add them by adding their numerators.
\frac{5a-3+6}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Do the multiplications in 5a-3+2\times 3.
\frac{5a+3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Combine like terms in 5a-3+6.
\frac{5a+3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{a\left(25a-1\right)}
Factor 25a^{2}-a.
\frac{\left(5a+3\right)a\left(25a-1\right)}{3a\left(5a-3\right)\left(25a-1\right)}+\frac{\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(5a-3\right) and a\left(25a-1\right) is 3a\left(5a-3\right)\left(25a-1\right). Multiply \frac{5a+3}{3\left(5a-3\right)} times \frac{a\left(25a-1\right)}{a\left(25a-1\right)}. Multiply \frac{1-8a^{2}}{a\left(25a-1\right)} times \frac{3\left(5a-3\right)}{3\left(5a-3\right)}.
\frac{\left(5a+3\right)a\left(25a-1\right)+\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)}
Since \frac{\left(5a+3\right)a\left(25a-1\right)}{3a\left(5a-3\right)\left(25a-1\right)} and \frac{\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)} have the same denominator, add them by adding their numerators.
\frac{125a^{3}-5a^{2}+75a^{2}-3a+15a-9-120a^{3}+72a^{2}}{3a\left(5a-3\right)\left(25a-1\right)}
Do the multiplications in \left(5a+3\right)a\left(25a-1\right)+\left(1-8a^{2}\right)\times 3\left(5a-3\right).
\frac{5a^{3}+142a^{2}+12a-9}{3a\left(5a-3\right)\left(25a-1\right)}
Combine like terms in 125a^{3}-5a^{2}+75a^{2}-3a+15a-9-120a^{3}+72a^{2}.
\frac{5a^{3}+142a^{2}+12a-9}{375a^{3}-240a^{2}+9a}
Expand 3a\left(5a-3\right)\left(25a-1\right).
\frac{3}{9}+\frac{2}{5a-3}+\frac{1-8a^{2}}{25a^{2}-a}
Multiply a and a to get a^{2}.
\frac{1}{3}+\frac{2}{5a-3}+\frac{1-8a^{2}}{25a^{2}-a}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{5a-3}{3\left(5a-3\right)}+\frac{2\times 3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5a-3 is 3\left(5a-3\right). Multiply \frac{1}{3} times \frac{5a-3}{5a-3}. Multiply \frac{2}{5a-3} times \frac{3}{3}.
\frac{5a-3+2\times 3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Since \frac{5a-3}{3\left(5a-3\right)} and \frac{2\times 3}{3\left(5a-3\right)} have the same denominator, add them by adding their numerators.
\frac{5a-3+6}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Do the multiplications in 5a-3+2\times 3.
\frac{5a+3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{25a^{2}-a}
Combine like terms in 5a-3+6.
\frac{5a+3}{3\left(5a-3\right)}+\frac{1-8a^{2}}{a\left(25a-1\right)}
Factor 25a^{2}-a.
\frac{\left(5a+3\right)a\left(25a-1\right)}{3a\left(5a-3\right)\left(25a-1\right)}+\frac{\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(5a-3\right) and a\left(25a-1\right) is 3a\left(5a-3\right)\left(25a-1\right). Multiply \frac{5a+3}{3\left(5a-3\right)} times \frac{a\left(25a-1\right)}{a\left(25a-1\right)}. Multiply \frac{1-8a^{2}}{a\left(25a-1\right)} times \frac{3\left(5a-3\right)}{3\left(5a-3\right)}.
\frac{\left(5a+3\right)a\left(25a-1\right)+\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)}
Since \frac{\left(5a+3\right)a\left(25a-1\right)}{3a\left(5a-3\right)\left(25a-1\right)} and \frac{\left(1-8a^{2}\right)\times 3\left(5a-3\right)}{3a\left(5a-3\right)\left(25a-1\right)} have the same denominator, add them by adding their numerators.
\frac{125a^{3}-5a^{2}+75a^{2}-3a+15a-9-120a^{3}+72a^{2}}{3a\left(5a-3\right)\left(25a-1\right)}
Do the multiplications in \left(5a+3\right)a\left(25a-1\right)+\left(1-8a^{2}\right)\times 3\left(5a-3\right).
\frac{5a^{3}+142a^{2}+12a-9}{3a\left(5a-3\right)\left(25a-1\right)}
Combine like terms in 125a^{3}-5a^{2}+75a^{2}-3a+15a-9-120a^{3}+72a^{2}.
\frac{5a^{3}+142a^{2}+12a-9}{375a^{3}-240a^{2}+9a}
Expand 3a\left(5a-3\right)\left(25a-1\right).