Solve for x
x=\frac{3\sqrt{11}-4}{83}\approx 0.071685233
x=\frac{-3\sqrt{11}-4}{83}\approx -0.168070776
Graph
Share
Copied to clipboard
x\left(7x-1\right)\times 3-\left(7x-1\right)\left(8x+1\right)=x\left(8x+1\right)\times 6
Variable x cannot be equal to any of the values -\frac{1}{8},0,\frac{1}{7} since division by zero is not defined. Multiply both sides of the equation by x\left(7x-1\right)\left(8x+1\right), the least common multiple of 8x+1,x,7x-1.
\left(7x^{2}-x\right)\times 3-\left(7x-1\right)\left(8x+1\right)=x\left(8x+1\right)\times 6
Use the distributive property to multiply x by 7x-1.
21x^{2}-3x-\left(7x-1\right)\left(8x+1\right)=x\left(8x+1\right)\times 6
Use the distributive property to multiply 7x^{2}-x by 3.
21x^{2}-3x-\left(56x^{2}-x-1\right)=x\left(8x+1\right)\times 6
Use the distributive property to multiply 7x-1 by 8x+1 and combine like terms.
21x^{2}-3x-56x^{2}+x+1=x\left(8x+1\right)\times 6
To find the opposite of 56x^{2}-x-1, find the opposite of each term.
-35x^{2}-3x+x+1=x\left(8x+1\right)\times 6
Combine 21x^{2} and -56x^{2} to get -35x^{2}.
-35x^{2}-2x+1=x\left(8x+1\right)\times 6
Combine -3x and x to get -2x.
-35x^{2}-2x+1=\left(8x^{2}+x\right)\times 6
Use the distributive property to multiply x by 8x+1.
-35x^{2}-2x+1=48x^{2}+6x
Use the distributive property to multiply 8x^{2}+x by 6.
-35x^{2}-2x+1-48x^{2}=6x
Subtract 48x^{2} from both sides.
-83x^{2}-2x+1=6x
Combine -35x^{2} and -48x^{2} to get -83x^{2}.
-83x^{2}-2x+1-6x=0
Subtract 6x from both sides.
-83x^{2}-8x+1=0
Combine -2x and -6x to get -8x.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-83\right)}}{2\left(-83\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -83 for a, -8 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-83\right)}}{2\left(-83\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+332}}{2\left(-83\right)}
Multiply -4 times -83.
x=\frac{-\left(-8\right)±\sqrt{396}}{2\left(-83\right)}
Add 64 to 332.
x=\frac{-\left(-8\right)±6\sqrt{11}}{2\left(-83\right)}
Take the square root of 396.
x=\frac{8±6\sqrt{11}}{2\left(-83\right)}
The opposite of -8 is 8.
x=\frac{8±6\sqrt{11}}{-166}
Multiply 2 times -83.
x=\frac{6\sqrt{11}+8}{-166}
Now solve the equation x=\frac{8±6\sqrt{11}}{-166} when ± is plus. Add 8 to 6\sqrt{11}.
x=\frac{-3\sqrt{11}-4}{83}
Divide 8+6\sqrt{11} by -166.
x=\frac{8-6\sqrt{11}}{-166}
Now solve the equation x=\frac{8±6\sqrt{11}}{-166} when ± is minus. Subtract 6\sqrt{11} from 8.
x=\frac{3\sqrt{11}-4}{83}
Divide 8-6\sqrt{11} by -166.
x=\frac{-3\sqrt{11}-4}{83} x=\frac{3\sqrt{11}-4}{83}
The equation is now solved.
x\left(7x-1\right)\times 3-\left(7x-1\right)\left(8x+1\right)=x\left(8x+1\right)\times 6
Variable x cannot be equal to any of the values -\frac{1}{8},0,\frac{1}{7} since division by zero is not defined. Multiply both sides of the equation by x\left(7x-1\right)\left(8x+1\right), the least common multiple of 8x+1,x,7x-1.
\left(7x^{2}-x\right)\times 3-\left(7x-1\right)\left(8x+1\right)=x\left(8x+1\right)\times 6
Use the distributive property to multiply x by 7x-1.
21x^{2}-3x-\left(7x-1\right)\left(8x+1\right)=x\left(8x+1\right)\times 6
Use the distributive property to multiply 7x^{2}-x by 3.
21x^{2}-3x-\left(56x^{2}-x-1\right)=x\left(8x+1\right)\times 6
Use the distributive property to multiply 7x-1 by 8x+1 and combine like terms.
21x^{2}-3x-56x^{2}+x+1=x\left(8x+1\right)\times 6
To find the opposite of 56x^{2}-x-1, find the opposite of each term.
-35x^{2}-3x+x+1=x\left(8x+1\right)\times 6
Combine 21x^{2} and -56x^{2} to get -35x^{2}.
-35x^{2}-2x+1=x\left(8x+1\right)\times 6
Combine -3x and x to get -2x.
-35x^{2}-2x+1=\left(8x^{2}+x\right)\times 6
Use the distributive property to multiply x by 8x+1.
-35x^{2}-2x+1=48x^{2}+6x
Use the distributive property to multiply 8x^{2}+x by 6.
-35x^{2}-2x+1-48x^{2}=6x
Subtract 48x^{2} from both sides.
-83x^{2}-2x+1=6x
Combine -35x^{2} and -48x^{2} to get -83x^{2}.
-83x^{2}-2x+1-6x=0
Subtract 6x from both sides.
-83x^{2}-8x+1=0
Combine -2x and -6x to get -8x.
-83x^{2}-8x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{-83x^{2}-8x}{-83}=-\frac{1}{-83}
Divide both sides by -83.
x^{2}+\left(-\frac{8}{-83}\right)x=-\frac{1}{-83}
Dividing by -83 undoes the multiplication by -83.
x^{2}+\frac{8}{83}x=-\frac{1}{-83}
Divide -8 by -83.
x^{2}+\frac{8}{83}x=\frac{1}{83}
Divide -1 by -83.
x^{2}+\frac{8}{83}x+\left(\frac{4}{83}\right)^{2}=\frac{1}{83}+\left(\frac{4}{83}\right)^{2}
Divide \frac{8}{83}, the coefficient of the x term, by 2 to get \frac{4}{83}. Then add the square of \frac{4}{83} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{83}x+\frac{16}{6889}=\frac{1}{83}+\frac{16}{6889}
Square \frac{4}{83} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{83}x+\frac{16}{6889}=\frac{99}{6889}
Add \frac{1}{83} to \frac{16}{6889} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{83}\right)^{2}=\frac{99}{6889}
Factor x^{2}+\frac{8}{83}x+\frac{16}{6889}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{83}\right)^{2}}=\sqrt{\frac{99}{6889}}
Take the square root of both sides of the equation.
x+\frac{4}{83}=\frac{3\sqrt{11}}{83} x+\frac{4}{83}=-\frac{3\sqrt{11}}{83}
Simplify.
x=\frac{3\sqrt{11}-4}{83} x=\frac{-3\sqrt{11}-4}{83}
Subtract \frac{4}{83} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}