Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\frac{3}{8}\times 2x+\frac{3}{8}\left(-3\right)-\frac{4}{3}\left(x-2\right)=\frac{2}{3}
Use the distributive property to multiply \frac{3}{8} by 2x-3.
\frac{3\times 2}{8}x+\frac{3}{8}\left(-3\right)-\frac{4}{3}\left(x-2\right)=\frac{2}{3}
Express \frac{3}{8}\times 2 as a single fraction.
\frac{6}{8}x+\frac{3}{8}\left(-3\right)-\frac{4}{3}\left(x-2\right)=\frac{2}{3}
Multiply 3 and 2 to get 6.
\frac{3}{4}x+\frac{3}{8}\left(-3\right)-\frac{4}{3}\left(x-2\right)=\frac{2}{3}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
\frac{3}{4}x+\frac{3\left(-3\right)}{8}-\frac{4}{3}\left(x-2\right)=\frac{2}{3}
Express \frac{3}{8}\left(-3\right) as a single fraction.
\frac{3}{4}x+\frac{-9}{8}-\frac{4}{3}\left(x-2\right)=\frac{2}{3}
Multiply 3 and -3 to get -9.
\frac{3}{4}x-\frac{9}{8}-\frac{4}{3}\left(x-2\right)=\frac{2}{3}
Fraction \frac{-9}{8} can be rewritten as -\frac{9}{8} by extracting the negative sign.
\frac{3}{4}x-\frac{9}{8}-\frac{4}{3}x-\frac{4}{3}\left(-2\right)=\frac{2}{3}
Use the distributive property to multiply -\frac{4}{3} by x-2.
\frac{3}{4}x-\frac{9}{8}-\frac{4}{3}x+\frac{-4\left(-2\right)}{3}=\frac{2}{3}
Express -\frac{4}{3}\left(-2\right) as a single fraction.
\frac{3}{4}x-\frac{9}{8}-\frac{4}{3}x+\frac{8}{3}=\frac{2}{3}
Multiply -4 and -2 to get 8.
-\frac{7}{12}x-\frac{9}{8}+\frac{8}{3}=\frac{2}{3}
Combine \frac{3}{4}x and -\frac{4}{3}x to get -\frac{7}{12}x.
-\frac{7}{12}x-\frac{27}{24}+\frac{64}{24}=\frac{2}{3}
Least common multiple of 8 and 3 is 24. Convert -\frac{9}{8} and \frac{8}{3} to fractions with denominator 24.
-\frac{7}{12}x+\frac{-27+64}{24}=\frac{2}{3}
Since -\frac{27}{24} and \frac{64}{24} have the same denominator, add them by adding their numerators.
-\frac{7}{12}x+\frac{37}{24}=\frac{2}{3}
Add -27 and 64 to get 37.
-\frac{7}{12}x=\frac{2}{3}-\frac{37}{24}
Subtract \frac{37}{24} from both sides.
-\frac{7}{12}x=\frac{16}{24}-\frac{37}{24}
Least common multiple of 3 and 24 is 24. Convert \frac{2}{3} and \frac{37}{24} to fractions with denominator 24.
-\frac{7}{12}x=\frac{16-37}{24}
Since \frac{16}{24} and \frac{37}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{12}x=\frac{-21}{24}
Subtract 37 from 16 to get -21.
-\frac{7}{12}x=-\frac{7}{8}
Reduce the fraction \frac{-21}{24} to lowest terms by extracting and canceling out 3.
x=-\frac{7}{8}\left(-\frac{12}{7}\right)
Multiply both sides by -\frac{12}{7}, the reciprocal of -\frac{7}{12}.
x=\frac{-7\left(-12\right)}{8\times 7}
Multiply -\frac{7}{8} times -\frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
x=\frac{84}{56}
Do the multiplications in the fraction \frac{-7\left(-12\right)}{8\times 7}.
x=\frac{3}{2}
Reduce the fraction \frac{84}{56} to lowest terms by extracting and canceling out 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}