Evaluate
\frac{13}{24}\approx 0.541666667
Factor
\frac{13}{2 ^ {3} \cdot 3} = 0.5416666666666666
Share
Copied to clipboard
\frac{9}{24}+\frac{10}{24}+\frac{7}{36}-\frac{4}{9}
Least common multiple of 8 and 12 is 24. Convert \frac{3}{8} and \frac{5}{12} to fractions with denominator 24.
\frac{9+10}{24}+\frac{7}{36}-\frac{4}{9}
Since \frac{9}{24} and \frac{10}{24} have the same denominator, add them by adding their numerators.
\frac{19}{24}+\frac{7}{36}-\frac{4}{9}
Add 9 and 10 to get 19.
\frac{57}{72}+\frac{14}{72}-\frac{4}{9}
Least common multiple of 24 and 36 is 72. Convert \frac{19}{24} and \frac{7}{36} to fractions with denominator 72.
\frac{57+14}{72}-\frac{4}{9}
Since \frac{57}{72} and \frac{14}{72} have the same denominator, add them by adding their numerators.
\frac{71}{72}-\frac{4}{9}
Add 57 and 14 to get 71.
\frac{71}{72}-\frac{32}{72}
Least common multiple of 72 and 9 is 72. Convert \frac{71}{72} and \frac{4}{9} to fractions with denominator 72.
\frac{71-32}{72}
Since \frac{71}{72} and \frac{32}{72} have the same denominator, subtract them by subtracting their numerators.
\frac{39}{72}
Subtract 32 from 71 to get 39.
\frac{13}{24}
Reduce the fraction \frac{39}{72} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}