Solve for x
x = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
Graph
Share
Copied to clipboard
\frac{\frac{3}{7}x\times 14}{8}=\frac{7}{8}
Divide \frac{3}{7}x by \frac{8}{14} by multiplying \frac{3}{7}x by the reciprocal of \frac{8}{14}.
\frac{\frac{3\times 14}{7}x}{8}=\frac{7}{8}
Express \frac{3}{7}\times 14 as a single fraction.
\frac{\frac{42}{7}x}{8}=\frac{7}{8}
Multiply 3 and 14 to get 42.
\frac{6x}{8}=\frac{7}{8}
Divide 42 by 7 to get 6.
\frac{3}{4}x=\frac{7}{8}
Divide 6x by 8 to get \frac{3}{4}x.
x=\frac{7}{8}\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
x=\frac{7\times 4}{8\times 3}
Multiply \frac{7}{8} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{28}{24}
Do the multiplications in the fraction \frac{7\times 4}{8\times 3}.
x=\frac{7}{6}
Reduce the fraction \frac{28}{24} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}