Evaluate
-\frac{2441}{1050}\approx -2.324761905
Factor
-\frac{2441}{1050} = -2\frac{341}{1050} = -2.3247619047619046
Share
Copied to clipboard
\frac{3}{7}-\frac{1\times 7}{5\times 2}\times \frac{3}{5}-\frac{7}{3}
Multiply \frac{1}{5} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{7}-\frac{7}{10}\times \frac{3}{5}-\frac{7}{3}
Do the multiplications in the fraction \frac{1\times 7}{5\times 2}.
\frac{3}{7}-\frac{7\times 3}{10\times 5}-\frac{7}{3}
Multiply \frac{7}{10} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{7}-\frac{21}{50}-\frac{7}{3}
Do the multiplications in the fraction \frac{7\times 3}{10\times 5}.
\frac{150}{350}-\frac{147}{350}-\frac{7}{3}
Least common multiple of 7 and 50 is 350. Convert \frac{3}{7} and \frac{21}{50} to fractions with denominator 350.
\frac{150-147}{350}-\frac{7}{3}
Since \frac{150}{350} and \frac{147}{350} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{350}-\frac{7}{3}
Subtract 147 from 150 to get 3.
\frac{9}{1050}-\frac{2450}{1050}
Least common multiple of 350 and 3 is 1050. Convert \frac{3}{350} and \frac{7}{3} to fractions with denominator 1050.
\frac{9-2450}{1050}
Since \frac{9}{1050} and \frac{2450}{1050} have the same denominator, subtract them by subtracting their numerators.
-\frac{2441}{1050}
Subtract 2450 from 9 to get -2441.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}