Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\frac{\frac{\frac{3}{7}}{-\frac{14+1}{7}}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Multiply 2 and 7 to get 14.
\frac{\frac{\frac{3}{7}}{-\frac{15}{7}}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Add 14 and 1 to get 15.
\frac{\frac{3}{7}\left(-\frac{7}{15}\right)\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Divide \frac{3}{7} by -\frac{15}{7} by multiplying \frac{3}{7} by the reciprocal of -\frac{15}{7}.
\frac{\frac{3\left(-7\right)}{7\times 15}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Multiply \frac{3}{7} times -\frac{7}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-21}{105}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Do the multiplications in the fraction \frac{3\left(-7\right)}{7\times 15}.
\frac{-\frac{1}{5}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Reduce the fraction \frac{-21}{105} to lowest terms by extracting and canceling out 21.
\frac{\frac{-\left(-64\right)}{5}}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Express -\frac{1}{5}\left(-64\right) as a single fraction.
\frac{\frac{64}{5}}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Multiply -1 and -64 to get 64.
\frac{\frac{64}{5}}{\frac{15+1}{5}}\times \frac{5}{8}
Multiply 3 and 5 to get 15.
\frac{\frac{64}{5}}{\frac{16}{5}}\times \frac{5}{8}
Add 15 and 1 to get 16.
\frac{64}{5}\times \frac{5}{16}\times \frac{5}{8}
Divide \frac{64}{5} by \frac{16}{5} by multiplying \frac{64}{5} by the reciprocal of \frac{16}{5}.
\frac{64\times 5}{5\times 16}\times \frac{5}{8}
Multiply \frac{64}{5} times \frac{5}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{64}{16}\times \frac{5}{8}
Cancel out 5 in both numerator and denominator.
4\times \frac{5}{8}
Divide 64 by 16 to get 4.
\frac{4\times 5}{8}
Express 4\times \frac{5}{8} as a single fraction.
\frac{20}{8}
Multiply 4 and 5 to get 20.
\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}