Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\frac{3}{7}}{-\frac{14+1}{7}}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Multiply 2 and 7 to get 14.
\frac{\frac{\frac{3}{7}}{-\frac{15}{7}}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Add 14 and 1 to get 15.
\frac{\frac{3}{7}\left(-\frac{7}{15}\right)\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Divide \frac{3}{7} by -\frac{15}{7} by multiplying \frac{3}{7} by the reciprocal of -\frac{15}{7}.
\frac{\frac{3\left(-7\right)}{7\times 15}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Multiply \frac{3}{7} times -\frac{7}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-21}{105}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Do the multiplications in the fraction \frac{3\left(-7\right)}{7\times 15}.
\frac{-\frac{1}{5}\left(-64\right)}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Reduce the fraction \frac{-21}{105} to lowest terms by extracting and canceling out 21.
\frac{\frac{-\left(-64\right)}{5}}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Express -\frac{1}{5}\left(-64\right) as a single fraction.
\frac{\frac{64}{5}}{\frac{3\times 5+1}{5}}\times \frac{5}{8}
Multiply -1 and -64 to get 64.
\frac{\frac{64}{5}}{\frac{15+1}{5}}\times \frac{5}{8}
Multiply 3 and 5 to get 15.
\frac{\frac{64}{5}}{\frac{16}{5}}\times \frac{5}{8}
Add 15 and 1 to get 16.
\frac{64}{5}\times \frac{5}{16}\times \frac{5}{8}
Divide \frac{64}{5} by \frac{16}{5} by multiplying \frac{64}{5} by the reciprocal of \frac{16}{5}.
\frac{64\times 5}{5\times 16}\times \frac{5}{8}
Multiply \frac{64}{5} times \frac{5}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{64}{16}\times \frac{5}{8}
Cancel out 5 in both numerator and denominator.
4\times \frac{5}{8}
Divide 64 by 16 to get 4.
\frac{4\times 5}{8}
Express 4\times \frac{5}{8} as a single fraction.
\frac{20}{8}
Multiply 4 and 5 to get 20.
\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.