Solve for x
x = -\frac{31}{18} = -1\frac{13}{18} \approx -1.722222222
Graph
Share
Copied to clipboard
\frac{3}{7}=\frac{9}{6}-\frac{2}{6}+\frac{3}{7}x
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{3}{7}=\frac{9-2}{6}+\frac{3}{7}x
Since \frac{9}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{7}=\frac{7}{6}+\frac{3}{7}x
Subtract 2 from 9 to get 7.
\frac{7}{6}+\frac{3}{7}x=\frac{3}{7}
Swap sides so that all variable terms are on the left hand side.
\frac{3}{7}x=\frac{3}{7}-\frac{7}{6}
Subtract \frac{7}{6} from both sides.
\frac{3}{7}x=\frac{18}{42}-\frac{49}{42}
Least common multiple of 7 and 6 is 42. Convert \frac{3}{7} and \frac{7}{6} to fractions with denominator 42.
\frac{3}{7}x=\frac{18-49}{42}
Since \frac{18}{42} and \frac{49}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{7}x=-\frac{31}{42}
Subtract 49 from 18 to get -31.
x=-\frac{31}{42}\times \frac{7}{3}
Multiply both sides by \frac{7}{3}, the reciprocal of \frac{3}{7}.
x=\frac{-31\times 7}{42\times 3}
Multiply -\frac{31}{42} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-217}{126}
Do the multiplications in the fraction \frac{-31\times 7}{42\times 3}.
x=-\frac{31}{18}
Reduce the fraction \frac{-217}{126} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}