Solve for n
n=4
Share
Copied to clipboard
3\left(n+10\right)=7\left(10-n\right)
Variable n cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by 7\left(n+10\right), the least common multiple of 7,10+n.
3n+30=7\left(10-n\right)
Use the distributive property to multiply 3 by n+10.
3n+30=70-7n
Use the distributive property to multiply 7 by 10-n.
3n+30+7n=70
Add 7n to both sides.
10n+30=70
Combine 3n and 7n to get 10n.
10n=70-30
Subtract 30 from both sides.
10n=40
Subtract 30 from 70 to get 40.
n=\frac{40}{10}
Divide both sides by 10.
n=4
Divide 40 by 10 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}