Evaluate
\frac{47}{42}\approx 1.119047619
Factor
\frac{47}{2 \cdot 3 \cdot 7} = 1\frac{5}{42} = 1.119047619047619
Share
Copied to clipboard
\frac{6}{14}+\frac{11}{14}-\frac{2}{21}
Least common multiple of 7 and 14 is 14. Convert \frac{3}{7} and \frac{11}{14} to fractions with denominator 14.
\frac{6+11}{14}-\frac{2}{21}
Since \frac{6}{14} and \frac{11}{14} have the same denominator, add them by adding their numerators.
\frac{17}{14}-\frac{2}{21}
Add 6 and 11 to get 17.
\frac{51}{42}-\frac{4}{42}
Least common multiple of 14 and 21 is 42. Convert \frac{17}{14} and \frac{2}{21} to fractions with denominator 42.
\frac{51-4}{42}
Since \frac{51}{42} and \frac{4}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{47}{42}
Subtract 4 from 51 to get 47.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}