Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(5+6i\right)}{\left(5-6i\right)\left(5+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+6i.
\frac{3\left(5+6i\right)}{5^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(5+6i\right)}{61}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 5+3\times \left(6i\right)}{61}
Multiply 3 times 5+6i.
\frac{15+18i}{61}
Do the multiplications in 3\times 5+3\times \left(6i\right).
\frac{15}{61}+\frac{18}{61}i
Divide 15+18i by 61 to get \frac{15}{61}+\frac{18}{61}i.
Re(\frac{3\left(5+6i\right)}{\left(5-6i\right)\left(5+6i\right)})
Multiply both numerator and denominator of \frac{3}{5-6i} by the complex conjugate of the denominator, 5+6i.
Re(\frac{3\left(5+6i\right)}{5^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{3\left(5+6i\right)}{61})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 5+3\times \left(6i\right)}{61})
Multiply 3 times 5+6i.
Re(\frac{15+18i}{61})
Do the multiplications in 3\times 5+3\times \left(6i\right).
Re(\frac{15}{61}+\frac{18}{61}i)
Divide 15+18i by 61 to get \frac{15}{61}+\frac{18}{61}i.
\frac{15}{61}
The real part of \frac{15}{61}+\frac{18}{61}i is \frac{15}{61}.