Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(5+4\sqrt{5}\right)}{\left(5-4\sqrt{5}\right)\left(5+4\sqrt{5}\right)}
Rationalize the denominator of \frac{3}{5-4\sqrt{5}} by multiplying numerator and denominator by 5+4\sqrt{5}.
\frac{3\left(5+4\sqrt{5}\right)}{5^{2}-\left(-4\sqrt{5}\right)^{2}}
Consider \left(5-4\sqrt{5}\right)\left(5+4\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(5+4\sqrt{5}\right)}{25-\left(-4\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{3\left(5+4\sqrt{5}\right)}{25-\left(-4\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-4\sqrt{5}\right)^{2}.
\frac{3\left(5+4\sqrt{5}\right)}{25-16\left(\sqrt{5}\right)^{2}}
Calculate -4 to the power of 2 and get 16.
\frac{3\left(5+4\sqrt{5}\right)}{25-16\times 5}
The square of \sqrt{5} is 5.
\frac{3\left(5+4\sqrt{5}\right)}{25-80}
Multiply 16 and 5 to get 80.
\frac{3\left(5+4\sqrt{5}\right)}{-55}
Subtract 80 from 25 to get -55.
\frac{15+12\sqrt{5}}{-55}
Use the distributive property to multiply 3 by 5+4\sqrt{5}.