Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{5}x\times 30x+30x\times 2=5\times 5+30x\left(-6\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30x, the least common multiple of 5,6x.
18xx+30x\times 2=5\times 5+30x\left(-6\right)
Multiply \frac{3}{5} and 30 to get 18.
18x^{2}+30x\times 2=5\times 5+30x\left(-6\right)
Multiply x and x to get x^{2}.
18x^{2}+60x=5\times 5+30x\left(-6\right)
Multiply 30 and 2 to get 60.
18x^{2}+60x=25+30x\left(-6\right)
Multiply 5 and 5 to get 25.
18x^{2}+60x=25-180x
Multiply 30 and -6 to get -180.
18x^{2}+60x-25=-180x
Subtract 25 from both sides.
18x^{2}+60x-25+180x=0
Add 180x to both sides.
18x^{2}+240x-25=0
Combine 60x and 180x to get 240x.
x=\frac{-240±\sqrt{240^{2}-4\times 18\left(-25\right)}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 240 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-240±\sqrt{57600-4\times 18\left(-25\right)}}{2\times 18}
Square 240.
x=\frac{-240±\sqrt{57600-72\left(-25\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{-240±\sqrt{57600+1800}}{2\times 18}
Multiply -72 times -25.
x=\frac{-240±\sqrt{59400}}{2\times 18}
Add 57600 to 1800.
x=\frac{-240±30\sqrt{66}}{2\times 18}
Take the square root of 59400.
x=\frac{-240±30\sqrt{66}}{36}
Multiply 2 times 18.
x=\frac{30\sqrt{66}-240}{36}
Now solve the equation x=\frac{-240±30\sqrt{66}}{36} when ± is plus. Add -240 to 30\sqrt{66}.
x=\frac{5\sqrt{66}}{6}-\frac{20}{3}
Divide -240+30\sqrt{66} by 36.
x=\frac{-30\sqrt{66}-240}{36}
Now solve the equation x=\frac{-240±30\sqrt{66}}{36} when ± is minus. Subtract 30\sqrt{66} from -240.
x=-\frac{5\sqrt{66}}{6}-\frac{20}{3}
Divide -240-30\sqrt{66} by 36.
x=\frac{5\sqrt{66}}{6}-\frac{20}{3} x=-\frac{5\sqrt{66}}{6}-\frac{20}{3}
The equation is now solved.
\frac{3}{5}x\times 30x+30x\times 2=5\times 5+30x\left(-6\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30x, the least common multiple of 5,6x.
18xx+30x\times 2=5\times 5+30x\left(-6\right)
Multiply \frac{3}{5} and 30 to get 18.
18x^{2}+30x\times 2=5\times 5+30x\left(-6\right)
Multiply x and x to get x^{2}.
18x^{2}+60x=5\times 5+30x\left(-6\right)
Multiply 30 and 2 to get 60.
18x^{2}+60x=25+30x\left(-6\right)
Multiply 5 and 5 to get 25.
18x^{2}+60x=25-180x
Multiply 30 and -6 to get -180.
18x^{2}+60x+180x=25
Add 180x to both sides.
18x^{2}+240x=25
Combine 60x and 180x to get 240x.
\frac{18x^{2}+240x}{18}=\frac{25}{18}
Divide both sides by 18.
x^{2}+\frac{240}{18}x=\frac{25}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}+\frac{40}{3}x=\frac{25}{18}
Reduce the fraction \frac{240}{18} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{40}{3}x+\left(\frac{20}{3}\right)^{2}=\frac{25}{18}+\left(\frac{20}{3}\right)^{2}
Divide \frac{40}{3}, the coefficient of the x term, by 2 to get \frac{20}{3}. Then add the square of \frac{20}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{40}{3}x+\frac{400}{9}=\frac{25}{18}+\frac{400}{9}
Square \frac{20}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{40}{3}x+\frac{400}{9}=\frac{275}{6}
Add \frac{25}{18} to \frac{400}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{20}{3}\right)^{2}=\frac{275}{6}
Factor x^{2}+\frac{40}{3}x+\frac{400}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{20}{3}\right)^{2}}=\sqrt{\frac{275}{6}}
Take the square root of both sides of the equation.
x+\frac{20}{3}=\frac{5\sqrt{66}}{6} x+\frac{20}{3}=-\frac{5\sqrt{66}}{6}
Simplify.
x=\frac{5\sqrt{66}}{6}-\frac{20}{3} x=-\frac{5\sqrt{66}}{6}-\frac{20}{3}
Subtract \frac{20}{3} from both sides of the equation.