Solve for x
x=-\frac{1}{78}\approx -0.012820513
Graph
Share
Copied to clipboard
\frac{3}{5}x+\frac{1}{15}=\frac{7}{3}\times 27x+\frac{7}{3}\left(-\frac{8}{35}\right)+\frac{7}{5}
Use the distributive property to multiply \frac{7}{3} by 27x-\frac{8}{35}.
\frac{3}{5}x+\frac{1}{15}=\frac{7\times 27}{3}x+\frac{7}{3}\left(-\frac{8}{35}\right)+\frac{7}{5}
Express \frac{7}{3}\times 27 as a single fraction.
\frac{3}{5}x+\frac{1}{15}=\frac{189}{3}x+\frac{7}{3}\left(-\frac{8}{35}\right)+\frac{7}{5}
Multiply 7 and 27 to get 189.
\frac{3}{5}x+\frac{1}{15}=63x+\frac{7}{3}\left(-\frac{8}{35}\right)+\frac{7}{5}
Divide 189 by 3 to get 63.
\frac{3}{5}x+\frac{1}{15}=63x+\frac{7\left(-8\right)}{3\times 35}+\frac{7}{5}
Multiply \frac{7}{3} times -\frac{8}{35} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}x+\frac{1}{15}=63x+\frac{-56}{105}+\frac{7}{5}
Do the multiplications in the fraction \frac{7\left(-8\right)}{3\times 35}.
\frac{3}{5}x+\frac{1}{15}=63x-\frac{8}{15}+\frac{7}{5}
Reduce the fraction \frac{-56}{105} to lowest terms by extracting and canceling out 7.
\frac{3}{5}x+\frac{1}{15}=63x-\frac{8}{15}+\frac{21}{15}
Least common multiple of 15 and 5 is 15. Convert -\frac{8}{15} and \frac{7}{5} to fractions with denominator 15.
\frac{3}{5}x+\frac{1}{15}=63x+\frac{-8+21}{15}
Since -\frac{8}{15} and \frac{21}{15} have the same denominator, add them by adding their numerators.
\frac{3}{5}x+\frac{1}{15}=63x+\frac{13}{15}
Add -8 and 21 to get 13.
\frac{3}{5}x+\frac{1}{15}-63x=\frac{13}{15}
Subtract 63x from both sides.
-\frac{312}{5}x+\frac{1}{15}=\frac{13}{15}
Combine \frac{3}{5}x and -63x to get -\frac{312}{5}x.
-\frac{312}{5}x=\frac{13}{15}-\frac{1}{15}
Subtract \frac{1}{15} from both sides.
-\frac{312}{5}x=\frac{13-1}{15}
Since \frac{13}{15} and \frac{1}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{312}{5}x=\frac{12}{15}
Subtract 1 from 13 to get 12.
-\frac{312}{5}x=\frac{4}{5}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
x=\frac{4}{5}\left(-\frac{5}{312}\right)
Multiply both sides by -\frac{5}{312}, the reciprocal of -\frac{312}{5}.
x=\frac{4\left(-5\right)}{5\times 312}
Multiply \frac{4}{5} times -\frac{5}{312} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-20}{1560}
Do the multiplications in the fraction \frac{4\left(-5\right)}{5\times 312}.
x=-\frac{1}{78}
Reduce the fraction \frac{-20}{1560} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}