Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{19}{15}wz-\frac{1}{8}z^{2}+\frac{5}{9}z^{2}-\frac{wz}{9}-\frac{z^{2}}{72}
Combine \frac{3}{5}wz and \frac{2}{3}zw to get \frac{19}{15}wz.
\frac{19}{15}wz+\frac{31}{72}z^{2}-\frac{wz}{9}-\frac{z^{2}}{72}
Combine -\frac{1}{8}z^{2} and \frac{5}{9}z^{2} to get \frac{31}{72}z^{2}.
\frac{52}{45}wz+\frac{31}{72}z^{2}-\frac{z^{2}}{72}
Combine \frac{19}{15}wz and -\frac{wz}{9} to get \frac{52}{45}wz.
\frac{52}{45}wz+\frac{5}{12}z^{2}
Combine \frac{31}{72}z^{2} and -\frac{z^{2}}{72} to get \frac{5}{12}z^{2}.
\frac{216wz-45z^{2}+240zw+200z^{2}-40wz-5z^{2}}{360}
Factor out \frac{1}{360}.
z\left(216w-45z+240w+200z-40w-5z\right)
Consider 216wz-45z^{2}+240zw+200z^{2}-40wz-5z^{2}. Factor out z.
150z+416w
Consider 216w-45z+240w+200z-40w-5z. Multiply and combine like terms.
2\left(75z+208w\right)
Consider 150z+416w. Factor out 2.
\frac{z\left(75z+208w\right)}{180}
Rewrite the complete factored expression.