\frac { 3 } { 5 } - ( 0,1 - \frac { 3 } { 4 } ) \cdot 1 =
Evaluate
1,25
Factor
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
\frac{3}{5}-\left(\frac{1}{10}-\frac{3}{4}\right)\times 1
Convert decimal number 0,1 to fraction \frac{1}{10}.
\frac{3}{5}-\left(\frac{2}{20}-\frac{15}{20}\right)\times 1
Least common multiple of 10 and 4 is 20. Convert \frac{1}{10} and \frac{3}{4} to fractions with denominator 20.
\frac{3}{5}-\frac{2-15}{20}\times 1
Since \frac{2}{20} and \frac{15}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{5}-\left(-\frac{13}{20}\right)
Subtract 15 from 2 to get -13.
\frac{3}{5}+\frac{13}{20}
The opposite of -\frac{13}{20} is \frac{13}{20}.
\frac{12}{20}+\frac{13}{20}
Least common multiple of 5 and 20 is 20. Convert \frac{3}{5} and \frac{13}{20} to fractions with denominator 20.
\frac{12+13}{20}
Since \frac{12}{20} and \frac{13}{20} have the same denominator, add them by adding their numerators.
\frac{25}{20}
Add 12 and 13 to get 25.
\frac{5}{4}
Reduce the fraction \frac{25}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}