Evaluate
-\frac{x^{2}}{10}-\frac{x}{6}+\frac{3}{5}
Expand
-\frac{x^{2}}{10}-\frac{x}{6}+\frac{3}{5}
Graph
Share
Copied to clipboard
\frac{3}{5}-\frac{1}{4}x\left(\frac{2}{3}+\frac{2}{5}x\right)
Multiply -1 and \frac{1}{4} to get -\frac{1}{4}.
\frac{3}{5}-\frac{1}{4}x\times \frac{2}{3}-\frac{1}{4}x\times \frac{2}{5}x
Use the distributive property to multiply -\frac{1}{4}x by \frac{2}{3}+\frac{2}{5}x.
\frac{3}{5}-\frac{1}{4}x\times \frac{2}{3}-\frac{1}{4}x^{2}\times \frac{2}{5}
Multiply x and x to get x^{2}.
\frac{3}{5}+\frac{-2}{4\times 3}x-\frac{1}{4}x^{2}\times \frac{2}{5}
Multiply -\frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}+\frac{-2}{12}x-\frac{1}{4}x^{2}\times \frac{2}{5}
Do the multiplications in the fraction \frac{-2}{4\times 3}.
\frac{3}{5}-\frac{1}{6}x-\frac{1}{4}x^{2}\times \frac{2}{5}
Reduce the fraction \frac{-2}{12} to lowest terms by extracting and canceling out 2.
\frac{3}{5}-\frac{1}{6}x+\frac{-2}{4\times 5}x^{2}
Multiply -\frac{1}{4} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}-\frac{1}{6}x+\frac{-2}{20}x^{2}
Do the multiplications in the fraction \frac{-2}{4\times 5}.
\frac{3}{5}-\frac{1}{6}x-\frac{1}{10}x^{2}
Reduce the fraction \frac{-2}{20} to lowest terms by extracting and canceling out 2.
\frac{3}{5}-\frac{1}{4}x\left(\frac{2}{3}+\frac{2}{5}x\right)
Multiply -1 and \frac{1}{4} to get -\frac{1}{4}.
\frac{3}{5}-\frac{1}{4}x\times \frac{2}{3}-\frac{1}{4}x\times \frac{2}{5}x
Use the distributive property to multiply -\frac{1}{4}x by \frac{2}{3}+\frac{2}{5}x.
\frac{3}{5}-\frac{1}{4}x\times \frac{2}{3}-\frac{1}{4}x^{2}\times \frac{2}{5}
Multiply x and x to get x^{2}.
\frac{3}{5}+\frac{-2}{4\times 3}x-\frac{1}{4}x^{2}\times \frac{2}{5}
Multiply -\frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}+\frac{-2}{12}x-\frac{1}{4}x^{2}\times \frac{2}{5}
Do the multiplications in the fraction \frac{-2}{4\times 3}.
\frac{3}{5}-\frac{1}{6}x-\frac{1}{4}x^{2}\times \frac{2}{5}
Reduce the fraction \frac{-2}{12} to lowest terms by extracting and canceling out 2.
\frac{3}{5}-\frac{1}{6}x+\frac{-2}{4\times 5}x^{2}
Multiply -\frac{1}{4} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}-\frac{1}{6}x+\frac{-2}{20}x^{2}
Do the multiplications in the fraction \frac{-2}{4\times 5}.
\frac{3}{5}-\frac{1}{6}x-\frac{1}{10}x^{2}
Reduce the fraction \frac{-2}{20} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}