Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{5}x+\frac{3}{5}\left(-4\right)-\left(x-3\right)=2\left(\frac{3}{4}x+\frac{7}{3}\right)
Use the distributive property to multiply \frac{3}{5} by x-4.
\frac{3}{5}x+\frac{3\left(-4\right)}{5}-\left(x-3\right)=2\left(\frac{3}{4}x+\frac{7}{3}\right)
Express \frac{3}{5}\left(-4\right) as a single fraction.
\frac{3}{5}x+\frac{-12}{5}-\left(x-3\right)=2\left(\frac{3}{4}x+\frac{7}{3}\right)
Multiply 3 and -4 to get -12.
\frac{3}{5}x-\frac{12}{5}-\left(x-3\right)=2\left(\frac{3}{4}x+\frac{7}{3}\right)
Fraction \frac{-12}{5} can be rewritten as -\frac{12}{5} by extracting the negative sign.
\frac{3}{5}x-\frac{12}{5}-x-\left(-3\right)=2\left(\frac{3}{4}x+\frac{7}{3}\right)
To find the opposite of x-3, find the opposite of each term.
\frac{3}{5}x-\frac{12}{5}-x+3=2\left(\frac{3}{4}x+\frac{7}{3}\right)
The opposite of -3 is 3.
-\frac{2}{5}x-\frac{12}{5}+3=2\left(\frac{3}{4}x+\frac{7}{3}\right)
Combine \frac{3}{5}x and -x to get -\frac{2}{5}x.
-\frac{2}{5}x-\frac{12}{5}+\frac{15}{5}=2\left(\frac{3}{4}x+\frac{7}{3}\right)
Convert 3 to fraction \frac{15}{5}.
-\frac{2}{5}x+\frac{-12+15}{5}=2\left(\frac{3}{4}x+\frac{7}{3}\right)
Since -\frac{12}{5} and \frac{15}{5} have the same denominator, add them by adding their numerators.
-\frac{2}{5}x+\frac{3}{5}=2\left(\frac{3}{4}x+\frac{7}{3}\right)
Add -12 and 15 to get 3.
-\frac{2}{5}x+\frac{3}{5}=2\times \frac{3}{4}x+2\times \frac{7}{3}
Use the distributive property to multiply 2 by \frac{3}{4}x+\frac{7}{3}.
-\frac{2}{5}x+\frac{3}{5}=\frac{2\times 3}{4}x+2\times \frac{7}{3}
Express 2\times \frac{3}{4} as a single fraction.
-\frac{2}{5}x+\frac{3}{5}=\frac{6}{4}x+2\times \frac{7}{3}
Multiply 2 and 3 to get 6.
-\frac{2}{5}x+\frac{3}{5}=\frac{3}{2}x+2\times \frac{7}{3}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
-\frac{2}{5}x+\frac{3}{5}=\frac{3}{2}x+\frac{2\times 7}{3}
Express 2\times \frac{7}{3} as a single fraction.
-\frac{2}{5}x+\frac{3}{5}=\frac{3}{2}x+\frac{14}{3}
Multiply 2 and 7 to get 14.
-\frac{2}{5}x+\frac{3}{5}-\frac{3}{2}x=\frac{14}{3}
Subtract \frac{3}{2}x from both sides.
-\frac{19}{10}x+\frac{3}{5}=\frac{14}{3}
Combine -\frac{2}{5}x and -\frac{3}{2}x to get -\frac{19}{10}x.
-\frac{19}{10}x=\frac{14}{3}-\frac{3}{5}
Subtract \frac{3}{5} from both sides.
-\frac{19}{10}x=\frac{70}{15}-\frac{9}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{14}{3} and \frac{3}{5} to fractions with denominator 15.
-\frac{19}{10}x=\frac{70-9}{15}
Since \frac{70}{15} and \frac{9}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{19}{10}x=\frac{61}{15}
Subtract 9 from 70 to get 61.
x=\frac{61}{15}\left(-\frac{10}{19}\right)
Multiply both sides by -\frac{10}{19}, the reciprocal of -\frac{19}{10}.
x=\frac{61\left(-10\right)}{15\times 19}
Multiply \frac{61}{15} times -\frac{10}{19} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-610}{285}
Do the multiplications in the fraction \frac{61\left(-10\right)}{15\times 19}.
x=-\frac{122}{57}
Reduce the fraction \frac{-610}{285} to lowest terms by extracting and canceling out 5.