Evaluate
\frac{7}{12}\approx 0.583333333
Factor
\frac{7}{2 ^ {2} \cdot 3} = 0.5833333333333334
Share
Copied to clipboard
\frac{3}{5}\left(-\frac{3}{12}-\frac{2}{12}\right)\left(-\frac{2\times 3+1}{3}\right)
Least common multiple of 4 and 6 is 12. Convert -\frac{1}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{3}{5}\times \frac{-3-2}{12}\left(-\frac{2\times 3+1}{3}\right)
Since -\frac{3}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{5}\left(-\frac{5}{12}\right)\left(-\frac{2\times 3+1}{3}\right)
Subtract 2 from -3 to get -5.
\frac{3\left(-5\right)}{5\times 12}\left(-\frac{2\times 3+1}{3}\right)
Multiply \frac{3}{5} times -\frac{5}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{-15}{60}\left(-\frac{2\times 3+1}{3}\right)
Do the multiplications in the fraction \frac{3\left(-5\right)}{5\times 12}.
-\frac{1}{4}\left(-\frac{2\times 3+1}{3}\right)
Reduce the fraction \frac{-15}{60} to lowest terms by extracting and canceling out 15.
-\frac{1}{4}\left(-\frac{6+1}{3}\right)
Multiply 2 and 3 to get 6.
-\frac{1}{4}\left(-\frac{7}{3}\right)
Add 6 and 1 to get 7.
\frac{-\left(-7\right)}{4\times 3}
Multiply -\frac{1}{4} times -\frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{12}
Do the multiplications in the fraction \frac{-\left(-7\right)}{4\times 3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}