Verify
false
Share
Copied to clipboard
\frac{3\times 2}{5\times 9}+\frac{55}{9}=\frac{35}{18}-\left(\frac{3}{1}+\frac{12}{3}\times \frac{12}{10}\right)\times \frac{5}{23}
Multiply \frac{3}{5} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{45}+\frac{55}{9}=\frac{35}{18}-\left(\frac{3}{1}+\frac{12}{3}\times \frac{12}{10}\right)\times \frac{5}{23}
Do the multiplications in the fraction \frac{3\times 2}{5\times 9}.
\frac{2}{15}+\frac{55}{9}=\frac{35}{18}-\left(\frac{3}{1}+\frac{12}{3}\times \frac{12}{10}\right)\times \frac{5}{23}
Reduce the fraction \frac{6}{45} to lowest terms by extracting and canceling out 3.
\frac{6}{45}+\frac{275}{45}=\frac{35}{18}-\left(\frac{3}{1}+\frac{12}{3}\times \frac{12}{10}\right)\times \frac{5}{23}
Least common multiple of 15 and 9 is 45. Convert \frac{2}{15} and \frac{55}{9} to fractions with denominator 45.
\frac{6+275}{45}=\frac{35}{18}-\left(\frac{3}{1}+\frac{12}{3}\times \frac{12}{10}\right)\times \frac{5}{23}
Since \frac{6}{45} and \frac{275}{45} have the same denominator, add them by adding their numerators.
\frac{281}{45}=\frac{35}{18}-\left(\frac{3}{1}+\frac{12}{3}\times \frac{12}{10}\right)\times \frac{5}{23}
Add 6 and 275 to get 281.
\frac{281}{45}=\frac{35}{18}-\left(3+\frac{12}{3}\times \frac{12}{10}\right)\times \frac{5}{23}
Anything divided by one gives itself.
\frac{281}{45}=\frac{35}{18}-\left(3+4\times \frac{12}{10}\right)\times \frac{5}{23}
Divide 12 by 3 to get 4.
\frac{281}{45}=\frac{35}{18}-\left(3+4\times \frac{6}{5}\right)\times \frac{5}{23}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{281}{45}=\frac{35}{18}-\left(3+\frac{4\times 6}{5}\right)\times \frac{5}{23}
Express 4\times \frac{6}{5} as a single fraction.
\frac{281}{45}=\frac{35}{18}-\left(3+\frac{24}{5}\right)\times \frac{5}{23}
Multiply 4 and 6 to get 24.
\frac{281}{45}=\frac{35}{18}-\left(\frac{15}{5}+\frac{24}{5}\right)\times \frac{5}{23}
Convert 3 to fraction \frac{15}{5}.
\frac{281}{45}=\frac{35}{18}-\frac{15+24}{5}\times \frac{5}{23}
Since \frac{15}{5} and \frac{24}{5} have the same denominator, add them by adding their numerators.
\frac{281}{45}=\frac{35}{18}-\frac{39}{5}\times \frac{5}{23}
Add 15 and 24 to get 39.
\frac{281}{45}=\frac{35}{18}-\frac{39\times 5}{5\times 23}
Multiply \frac{39}{5} times \frac{5}{23} by multiplying numerator times numerator and denominator times denominator.
\frac{281}{45}=\frac{35}{18}-\frac{39}{23}
Cancel out 5 in both numerator and denominator.
\frac{281}{45}=\frac{805}{414}-\frac{702}{414}
Least common multiple of 18 and 23 is 414. Convert \frac{35}{18} and \frac{39}{23} to fractions with denominator 414.
\frac{281}{45}=\frac{805-702}{414}
Since \frac{805}{414} and \frac{702}{414} have the same denominator, subtract them by subtracting their numerators.
\frac{281}{45}=\frac{103}{414}
Subtract 702 from 805 to get 103.
\frac{12926}{2070}=\frac{515}{2070}
Least common multiple of 45 and 414 is 2070. Convert \frac{281}{45} and \frac{103}{414} to fractions with denominator 2070.
\text{false}
Compare \frac{12926}{2070} and \frac{515}{2070}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}