Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3}{5}\times 10\sqrt{5}}{\frac{3}{2}}k\sqrt{20}
Factor 500=10^{2}\times 5. Rewrite the square root of the product \sqrt{10^{2}\times 5} as the product of square roots \sqrt{10^{2}}\sqrt{5}. Take the square root of 10^{2}.
\frac{\frac{3\times 10}{5}\sqrt{5}}{\frac{3}{2}}k\sqrt{20}
Express \frac{3}{5}\times 10 as a single fraction.
\frac{\frac{30}{5}\sqrt{5}}{\frac{3}{2}}k\sqrt{20}
Multiply 3 and 10 to get 30.
\frac{6\sqrt{5}}{\frac{3}{2}}k\sqrt{20}
Divide 30 by 5 to get 6.
\frac{6\sqrt{5}\times 2}{3}k\sqrt{20}
Divide 6\sqrt{5} by \frac{3}{2} by multiplying 6\sqrt{5} by the reciprocal of \frac{3}{2}.
\frac{12\sqrt{5}}{3}k\sqrt{20}
Multiply 6 and 2 to get 12.
4\sqrt{5}k\sqrt{20}
Divide 12\sqrt{5} by 3 to get 4\sqrt{5}.
4\sqrt{5}k\times 2\sqrt{5}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
8\sqrt{5}k\sqrt{5}
Multiply 4 and 2 to get 8.
8\times 5k
Multiply \sqrt{5} and \sqrt{5} to get 5.
40k
Multiply 8 and 5 to get 40.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{\frac{3}{5}\times 10\sqrt{5}}{\frac{3}{2}}k\sqrt{20})
Factor 500=10^{2}\times 5. Rewrite the square root of the product \sqrt{10^{2}\times 5} as the product of square roots \sqrt{10^{2}}\sqrt{5}. Take the square root of 10^{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{\frac{3\times 10}{5}\sqrt{5}}{\frac{3}{2}}k\sqrt{20})
Express \frac{3}{5}\times 10 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{\frac{30}{5}\sqrt{5}}{\frac{3}{2}}k\sqrt{20})
Multiply 3 and 10 to get 30.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{6\sqrt{5}}{\frac{3}{2}}k\sqrt{20})
Divide 30 by 5 to get 6.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{6\sqrt{5}\times 2}{3}k\sqrt{20})
Divide 6\sqrt{5} by \frac{3}{2} by multiplying 6\sqrt{5} by the reciprocal of \frac{3}{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{12\sqrt{5}}{3}k\sqrt{20})
Multiply 6 and 2 to get 12.
\frac{\mathrm{d}}{\mathrm{d}k}(4\sqrt{5}k\sqrt{20})
Divide 12\sqrt{5} by 3 to get 4\sqrt{5}.
\frac{\mathrm{d}}{\mathrm{d}k}(4\sqrt{5}k\times 2\sqrt{5})
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(8\sqrt{5}k\sqrt{5})
Multiply 4 and 2 to get 8.
\frac{\mathrm{d}}{\mathrm{d}k}(8\times 5k)
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{\mathrm{d}}{\mathrm{d}k}(40k)
Multiply 8 and 5 to get 40.
40k^{1-1}
The derivative of ax^{n} is nax^{n-1}.
40k^{0}
Subtract 1 from 1.
40\times 1
For any term t except 0, t^{0}=1.
40
For any term t, t\times 1=t and 1t=t.