Evaluate
40k
Differentiate w.r.t. k
40
Quiz
Algebra
5 problems similar to:
\frac { 3 } { 5 } \sqrt { 500 } \div \frac { 3 } { 2 } k \sqrt { 20 }
Share
Copied to clipboard
\frac{\frac{3}{5}\times 10\sqrt{5}}{\frac{3}{2}}k\sqrt{20}
Factor 500=10^{2}\times 5. Rewrite the square root of the product \sqrt{10^{2}\times 5} as the product of square roots \sqrt{10^{2}}\sqrt{5}. Take the square root of 10^{2}.
\frac{\frac{3\times 10}{5}\sqrt{5}}{\frac{3}{2}}k\sqrt{20}
Express \frac{3}{5}\times 10 as a single fraction.
\frac{\frac{30}{5}\sqrt{5}}{\frac{3}{2}}k\sqrt{20}
Multiply 3 and 10 to get 30.
\frac{6\sqrt{5}}{\frac{3}{2}}k\sqrt{20}
Divide 30 by 5 to get 6.
\frac{6\sqrt{5}\times 2}{3}k\sqrt{20}
Divide 6\sqrt{5} by \frac{3}{2} by multiplying 6\sqrt{5} by the reciprocal of \frac{3}{2}.
\frac{12\sqrt{5}}{3}k\sqrt{20}
Multiply 6 and 2 to get 12.
4\sqrt{5}k\sqrt{20}
Divide 12\sqrt{5} by 3 to get 4\sqrt{5}.
4\sqrt{5}k\times 2\sqrt{5}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
8\sqrt{5}k\sqrt{5}
Multiply 4 and 2 to get 8.
8\times 5k
Multiply \sqrt{5} and \sqrt{5} to get 5.
40k
Multiply 8 and 5 to get 40.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{\frac{3}{5}\times 10\sqrt{5}}{\frac{3}{2}}k\sqrt{20})
Factor 500=10^{2}\times 5. Rewrite the square root of the product \sqrt{10^{2}\times 5} as the product of square roots \sqrt{10^{2}}\sqrt{5}. Take the square root of 10^{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{\frac{3\times 10}{5}\sqrt{5}}{\frac{3}{2}}k\sqrt{20})
Express \frac{3}{5}\times 10 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{\frac{30}{5}\sqrt{5}}{\frac{3}{2}}k\sqrt{20})
Multiply 3 and 10 to get 30.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{6\sqrt{5}}{\frac{3}{2}}k\sqrt{20})
Divide 30 by 5 to get 6.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{6\sqrt{5}\times 2}{3}k\sqrt{20})
Divide 6\sqrt{5} by \frac{3}{2} by multiplying 6\sqrt{5} by the reciprocal of \frac{3}{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{12\sqrt{5}}{3}k\sqrt{20})
Multiply 6 and 2 to get 12.
\frac{\mathrm{d}}{\mathrm{d}k}(4\sqrt{5}k\sqrt{20})
Divide 12\sqrt{5} by 3 to get 4\sqrt{5}.
\frac{\mathrm{d}}{\mathrm{d}k}(4\sqrt{5}k\times 2\sqrt{5})
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(8\sqrt{5}k\sqrt{5})
Multiply 4 and 2 to get 8.
\frac{\mathrm{d}}{\mathrm{d}k}(8\times 5k)
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{\mathrm{d}}{\mathrm{d}k}(40k)
Multiply 8 and 5 to get 40.
40k^{1-1}
The derivative of ax^{n} is nax^{n-1}.
40k^{0}
Subtract 1 from 1.
40\times 1
For any term t except 0, t^{0}=1.
40
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}