Solve for a
a=15
Share
Copied to clipboard
\frac{3}{5}a+\frac{5}{8}a+\frac{5}{8}=19
Use the distributive property to multiply \frac{5}{8} by a+1.
\frac{49}{40}a+\frac{5}{8}=19
Combine \frac{3}{5}a and \frac{5}{8}a to get \frac{49}{40}a.
\frac{49}{40}a=19-\frac{5}{8}
Subtract \frac{5}{8} from both sides.
\frac{49}{40}a=\frac{152}{8}-\frac{5}{8}
Convert 19 to fraction \frac{152}{8}.
\frac{49}{40}a=\frac{152-5}{8}
Since \frac{152}{8} and \frac{5}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{49}{40}a=\frac{147}{8}
Subtract 5 from 152 to get 147.
a=\frac{147}{8}\times \frac{40}{49}
Multiply both sides by \frac{40}{49}, the reciprocal of \frac{49}{40}.
a=\frac{147\times 40}{8\times 49}
Multiply \frac{147}{8} times \frac{40}{49} by multiplying numerator times numerator and denominator times denominator.
a=\frac{5880}{392}
Do the multiplications in the fraction \frac{147\times 40}{8\times 49}.
a=15
Divide 5880 by 392 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}