Evaluate
-\frac{31}{21}\approx -1.476190476
Factor
-\frac{31}{21} = -1\frac{10}{21} = -1.4761904761904763
Share
Copied to clipboard
\frac{3\left(-1\right)}{5\times 2}-\frac{5}{6}+\frac{\frac{3}{7}}{-\frac{5}{4}}
Multiply \frac{3}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{10}-\frac{5}{6}+\frac{\frac{3}{7}}{-\frac{5}{4}}
Do the multiplications in the fraction \frac{3\left(-1\right)}{5\times 2}.
-\frac{3}{10}-\frac{5}{6}+\frac{\frac{3}{7}}{-\frac{5}{4}}
Fraction \frac{-3}{10} can be rewritten as -\frac{3}{10} by extracting the negative sign.
-\frac{9}{30}-\frac{25}{30}+\frac{\frac{3}{7}}{-\frac{5}{4}}
Least common multiple of 10 and 6 is 30. Convert -\frac{3}{10} and \frac{5}{6} to fractions with denominator 30.
\frac{-9-25}{30}+\frac{\frac{3}{7}}{-\frac{5}{4}}
Since -\frac{9}{30} and \frac{25}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{-34}{30}+\frac{\frac{3}{7}}{-\frac{5}{4}}
Subtract 25 from -9 to get -34.
-\frac{17}{15}+\frac{\frac{3}{7}}{-\frac{5}{4}}
Reduce the fraction \frac{-34}{30} to lowest terms by extracting and canceling out 2.
-\frac{17}{15}+\frac{3}{7}\left(-\frac{4}{5}\right)
Divide \frac{3}{7} by -\frac{5}{4} by multiplying \frac{3}{7} by the reciprocal of -\frac{5}{4}.
-\frac{17}{15}+\frac{3\left(-4\right)}{7\times 5}
Multiply \frac{3}{7} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{17}{15}+\frac{-12}{35}
Do the multiplications in the fraction \frac{3\left(-4\right)}{7\times 5}.
-\frac{17}{15}-\frac{12}{35}
Fraction \frac{-12}{35} can be rewritten as -\frac{12}{35} by extracting the negative sign.
-\frac{119}{105}-\frac{36}{105}
Least common multiple of 15 and 35 is 105. Convert -\frac{17}{15} and \frac{12}{35} to fractions with denominator 105.
\frac{-119-36}{105}
Since -\frac{119}{105} and \frac{36}{105} have the same denominator, subtract them by subtracting their numerators.
\frac{-155}{105}
Subtract 36 from -119 to get -155.
-\frac{31}{21}
Reduce the fraction \frac{-155}{105} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}