Evaluate
\frac{5}{14}\approx 0.357142857
Factor
\frac{5}{2 \cdot 7} = 0.35714285714285715
Share
Copied to clipboard
\frac{3}{5}\times \frac{15}{14}\times \frac{7}{9}-\frac{1}{7}
Divide \frac{3}{5} by \frac{14}{15} by multiplying \frac{3}{5} by the reciprocal of \frac{14}{15}.
\frac{3\times 15}{5\times 14}\times \frac{7}{9}-\frac{1}{7}
Multiply \frac{3}{5} times \frac{15}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{45}{70}\times \frac{7}{9}-\frac{1}{7}
Do the multiplications in the fraction \frac{3\times 15}{5\times 14}.
\frac{9}{14}\times \frac{7}{9}-\frac{1}{7}
Reduce the fraction \frac{45}{70} to lowest terms by extracting and canceling out 5.
\frac{9\times 7}{14\times 9}-\frac{1}{7}
Multiply \frac{9}{14} times \frac{7}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{14}-\frac{1}{7}
Cancel out 9 in both numerator and denominator.
\frac{1}{2}-\frac{1}{7}
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
\frac{7}{14}-\frac{2}{14}
Least common multiple of 2 and 7 is 14. Convert \frac{1}{2} and \frac{1}{7} to fractions with denominator 14.
\frac{7-2}{14}
Since \frac{7}{14} and \frac{2}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{14}
Subtract 2 from 7 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}