\frac { 3 } { 5 } + \frac { 2 } { 3 } \quad \text { (2) } 3 \frac { 1 } { 4 } + 2 \frac { 2 } { 7 } \quad \text { (3) } 1 \frac { 1 } { 6 } + \frac { 3 } { 10 }
Evaluate
\frac{397}{30}\approx 13.233333333
Factor
\frac{397}{2 \cdot 3 \cdot 5} = 13\frac{7}{30} = 13.233333333333333
Share
Copied to clipboard
\frac{3}{5}+\frac{2\times 2}{3}\times \frac{3\times 4+1}{4}+\frac{2\times 7+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Express \frac{2}{3}\times 2 as a single fraction.
\frac{3}{5}+\frac{4}{3}\times \frac{3\times 4+1}{4}+\frac{2\times 7+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Multiply 2 and 2 to get 4.
\frac{3}{5}+\frac{4}{3}\times \frac{12+1}{4}+\frac{2\times 7+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Multiply 3 and 4 to get 12.
\frac{3}{5}+\frac{4}{3}\times \frac{13}{4}+\frac{2\times 7+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Add 12 and 1 to get 13.
\frac{3}{5}+\frac{4\times 13}{3\times 4}+\frac{2\times 7+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Multiply \frac{4}{3} times \frac{13}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}+\frac{13}{3}+\frac{2\times 7+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Cancel out 4 in both numerator and denominator.
\frac{9}{15}+\frac{65}{15}+\frac{2\times 7+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Least common multiple of 5 and 3 is 15. Convert \frac{3}{5} and \frac{13}{3} to fractions with denominator 15.
\frac{9+65}{15}+\frac{2\times 7+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Since \frac{9}{15} and \frac{65}{15} have the same denominator, add them by adding their numerators.
\frac{74}{15}+\frac{2\times 7+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Add 9 and 65 to get 74.
\frac{74}{15}+\frac{14+2}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Multiply 2 and 7 to get 14.
\frac{74}{15}+\frac{16}{7}\times 3\times \frac{1\times 6+1}{6}+\frac{3}{10}
Add 14 and 2 to get 16.
\frac{74}{15}+\frac{16\times 3}{7}\times \frac{1\times 6+1}{6}+\frac{3}{10}
Express \frac{16}{7}\times 3 as a single fraction.
\frac{74}{15}+\frac{48}{7}\times \frac{1\times 6+1}{6}+\frac{3}{10}
Multiply 16 and 3 to get 48.
\frac{74}{15}+\frac{48}{7}\times \frac{6+1}{6}+\frac{3}{10}
Multiply 1 and 6 to get 6.
\frac{74}{15}+\frac{48}{7}\times \frac{7}{6}+\frac{3}{10}
Add 6 and 1 to get 7.
\frac{74}{15}+\frac{48\times 7}{7\times 6}+\frac{3}{10}
Multiply \frac{48}{7} times \frac{7}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{74}{15}+\frac{48}{6}+\frac{3}{10}
Cancel out 7 in both numerator and denominator.
\frac{74}{15}+8+\frac{3}{10}
Divide 48 by 6 to get 8.
\frac{74}{15}+\frac{120}{15}+\frac{3}{10}
Convert 8 to fraction \frac{120}{15}.
\frac{74+120}{15}+\frac{3}{10}
Since \frac{74}{15} and \frac{120}{15} have the same denominator, add them by adding their numerators.
\frac{194}{15}+\frac{3}{10}
Add 74 and 120 to get 194.
\frac{388}{30}+\frac{9}{30}
Least common multiple of 15 and 10 is 30. Convert \frac{194}{15} and \frac{3}{10} to fractions with denominator 30.
\frac{388+9}{30}
Since \frac{388}{30} and \frac{9}{30} have the same denominator, add them by adding their numerators.
\frac{397}{30}
Add 388 and 9 to get 397.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}