Evaluate
-\frac{8}{15}\approx -0.533333333
Factor
-\frac{8}{15} = -0.5333333333333333
Share
Copied to clipboard
\frac{3}{5}+\frac{1\times 6}{3\times 5}-\left(\frac{1}{5}+\frac{4}{3}\right)
Multiply \frac{1}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}+\frac{6}{15}-\left(\frac{1}{5}+\frac{4}{3}\right)
Do the multiplications in the fraction \frac{1\times 6}{3\times 5}.
\frac{3}{5}+\frac{2}{5}-\left(\frac{1}{5}+\frac{4}{3}\right)
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
\frac{3+2}{5}-\left(\frac{1}{5}+\frac{4}{3}\right)
Since \frac{3}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{5}{5}-\left(\frac{1}{5}+\frac{4}{3}\right)
Add 3 and 2 to get 5.
1-\left(\frac{1}{5}+\frac{4}{3}\right)
Divide 5 by 5 to get 1.
1-\left(\frac{3}{15}+\frac{20}{15}\right)
Least common multiple of 5 and 3 is 15. Convert \frac{1}{5} and \frac{4}{3} to fractions with denominator 15.
1-\frac{3+20}{15}
Since \frac{3}{15} and \frac{20}{15} have the same denominator, add them by adding their numerators.
1-\frac{23}{15}
Add 3 and 20 to get 23.
\frac{15}{15}-\frac{23}{15}
Convert 1 to fraction \frac{15}{15}.
\frac{15-23}{15}
Since \frac{15}{15} and \frac{23}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{8}{15}
Subtract 23 from 15 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}