Evaluate
\frac{33}{65}\approx 0.507692308
Factor
\frac{3 \cdot 11}{5 \cdot 13} = 0.5076923076923077
Share
Copied to clipboard
\frac{3}{5+\frac{5}{5+\frac{5}{10}}}
Add 5 and 5 to get 10.
\frac{3}{5+\frac{5}{5+\frac{1}{2}}}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{3}{5+\frac{5}{\frac{10}{2}+\frac{1}{2}}}
Convert 5 to fraction \frac{10}{2}.
\frac{3}{5+\frac{5}{\frac{10+1}{2}}}
Since \frac{10}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{5+\frac{5}{\frac{11}{2}}}
Add 10 and 1 to get 11.
\frac{3}{5+5\times \frac{2}{11}}
Divide 5 by \frac{11}{2} by multiplying 5 by the reciprocal of \frac{11}{2}.
\frac{3}{5+\frac{5\times 2}{11}}
Express 5\times \frac{2}{11} as a single fraction.
\frac{3}{5+\frac{10}{11}}
Multiply 5 and 2 to get 10.
\frac{3}{\frac{55}{11}+\frac{10}{11}}
Convert 5 to fraction \frac{55}{11}.
\frac{3}{\frac{55+10}{11}}
Since \frac{55}{11} and \frac{10}{11} have the same denominator, add them by adding their numerators.
\frac{3}{\frac{65}{11}}
Add 55 and 10 to get 65.
3\times \frac{11}{65}
Divide 3 by \frac{65}{11} by multiplying 3 by the reciprocal of \frac{65}{11}.
\frac{3\times 11}{65}
Express 3\times \frac{11}{65} as a single fraction.
\frac{33}{65}
Multiply 3 and 11 to get 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}