Factor
\frac{\left(x-16\right)\left(3x-16\right)}{4}
Evaluate
\frac{\left(x-16\right)\left(3x-16\right)}{4}
Graph
Share
Copied to clipboard
\frac{3x^{2}-64x+256}{4}
Factor out \frac{1}{4}.
a+b=-64 ab=3\times 256=768
Consider 3x^{2}-64x+256. Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+256. To find a and b, set up a system to be solved.
-1,-768 -2,-384 -3,-256 -4,-192 -6,-128 -8,-96 -12,-64 -16,-48 -24,-32
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 768.
-1-768=-769 -2-384=-386 -3-256=-259 -4-192=-196 -6-128=-134 -8-96=-104 -12-64=-76 -16-48=-64 -24-32=-56
Calculate the sum for each pair.
a=-48 b=-16
The solution is the pair that gives sum -64.
\left(3x^{2}-48x\right)+\left(-16x+256\right)
Rewrite 3x^{2}-64x+256 as \left(3x^{2}-48x\right)+\left(-16x+256\right).
3x\left(x-16\right)-16\left(x-16\right)
Factor out 3x in the first and -16 in the second group.
\left(x-16\right)\left(3x-16\right)
Factor out common term x-16 by using distributive property.
\frac{\left(x-16\right)\left(3x-16\right)}{4}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}