Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{4}x^{2}-\frac{1}{2}x=-\frac{1}{12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{3}{4}x^{2}-\frac{1}{2}x-\left(-\frac{1}{12}\right)=-\frac{1}{12}-\left(-\frac{1}{12}\right)
Add \frac{1}{12} to both sides of the equation.
\frac{3}{4}x^{2}-\frac{1}{2}x-\left(-\frac{1}{12}\right)=0
Subtracting -\frac{1}{12} from itself leaves 0.
\frac{3}{4}x^{2}-\frac{1}{2}x+\frac{1}{12}=0
Subtract -\frac{1}{12} from 0.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{3}{4}\times \frac{1}{12}}}{2\times \frac{3}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{4} for a, -\frac{1}{2} for b, and \frac{1}{12} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{3}{4}\times \frac{1}{12}}}{2\times \frac{3}{4}}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-3\times \frac{1}{12}}}{2\times \frac{3}{4}}
Multiply -4 times \frac{3}{4}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1-1}{4}}}{2\times \frac{3}{4}}
Multiply -3 times \frac{1}{12}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{0}}{2\times \frac{3}{4}}
Add \frac{1}{4} to -\frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{-\frac{1}{2}}{2\times \frac{3}{4}}
Take the square root of 0.
x=\frac{\frac{1}{2}}{2\times \frac{3}{4}}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}}{\frac{3}{2}}
Multiply 2 times \frac{3}{4}.
x=\frac{1}{3}
Divide \frac{1}{2} by \frac{3}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{2}.
\frac{3}{4}x^{2}-\frac{1}{2}x=-\frac{1}{12}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{4}x^{2}-\frac{1}{2}x}{\frac{3}{4}}=-\frac{\frac{1}{12}}{\frac{3}{4}}
Divide both sides of the equation by \frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{3}{4}}\right)x=-\frac{\frac{1}{12}}{\frac{3}{4}}
Dividing by \frac{3}{4} undoes the multiplication by \frac{3}{4}.
x^{2}-\frac{2}{3}x=-\frac{\frac{1}{12}}{\frac{3}{4}}
Divide -\frac{1}{2} by \frac{3}{4} by multiplying -\frac{1}{2} by the reciprocal of \frac{3}{4}.
x^{2}-\frac{2}{3}x=-\frac{1}{9}
Divide -\frac{1}{12} by \frac{3}{4} by multiplying -\frac{1}{12} by the reciprocal of \frac{3}{4}.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=0
Add -\frac{1}{9} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=0
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{1}{3}=0 x-\frac{1}{3}=0
Simplify.
x=\frac{1}{3} x=\frac{1}{3}
Add \frac{1}{3} to both sides of the equation.
x=\frac{1}{3}
The equation is now solved. Solutions are the same.