Solve for x
x=\frac{3}{25}=0.12
Graph
Share
Copied to clipboard
\frac{3}{4}x+\frac{15}{4}+\frac{4}{3}x=4
Add \frac{4}{3}x to both sides.
\frac{25}{12}x+\frac{15}{4}=4
Combine \frac{3}{4}x and \frac{4}{3}x to get \frac{25}{12}x.
\frac{25}{12}x=4-\frac{15}{4}
Subtract \frac{15}{4} from both sides.
\frac{25}{12}x=\frac{16}{4}-\frac{15}{4}
Convert 4 to fraction \frac{16}{4}.
\frac{25}{12}x=\frac{16-15}{4}
Since \frac{16}{4} and \frac{15}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{12}x=\frac{1}{4}
Subtract 15 from 16 to get 1.
x=\frac{1}{4}\times \frac{12}{25}
Multiply both sides by \frac{12}{25}, the reciprocal of \frac{25}{12}.
x=\frac{1\times 12}{4\times 25}
Multiply \frac{1}{4} times \frac{12}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{12}{100}
Do the multiplications in the fraction \frac{1\times 12}{4\times 25}.
x=\frac{3}{25}
Reduce the fraction \frac{12}{100} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}