Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

v^{2}=61\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
v^{2}=\frac{244}{3}
Multiply 61 and \frac{4}{3} to get \frac{244}{3}.
v=\frac{2\sqrt{183}}{3} v=-\frac{2\sqrt{183}}{3}
Take the square root of both sides of the equation.
v^{2}=61\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
v^{2}=\frac{244}{3}
Multiply 61 and \frac{4}{3} to get \frac{244}{3}.
v^{2}-\frac{244}{3}=0
Subtract \frac{244}{3} from both sides.
v=\frac{0±\sqrt{0^{2}-4\left(-\frac{244}{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{244}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\left(-\frac{244}{3}\right)}}{2}
Square 0.
v=\frac{0±\sqrt{\frac{976}{3}}}{2}
Multiply -4 times -\frac{244}{3}.
v=\frac{0±\frac{4\sqrt{183}}{3}}{2}
Take the square root of \frac{976}{3}.
v=\frac{2\sqrt{183}}{3}
Now solve the equation v=\frac{0±\frac{4\sqrt{183}}{3}}{2} when ± is plus.
v=-\frac{2\sqrt{183}}{3}
Now solve the equation v=\frac{0±\frac{4\sqrt{183}}{3}}{2} when ± is minus.
v=\frac{2\sqrt{183}}{3} v=-\frac{2\sqrt{183}}{3}
The equation is now solved.