Solve for v
v = \frac{2 \sqrt{183}}{3} \approx 9.018499506
v = -\frac{2 \sqrt{183}}{3} \approx -9.018499506
Share
Copied to clipboard
v^{2}=61\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
v^{2}=\frac{244}{3}
Multiply 61 and \frac{4}{3} to get \frac{244}{3}.
v=\frac{2\sqrt{183}}{3} v=-\frac{2\sqrt{183}}{3}
Take the square root of both sides of the equation.
v^{2}=61\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
v^{2}=\frac{244}{3}
Multiply 61 and \frac{4}{3} to get \frac{244}{3}.
v^{2}-\frac{244}{3}=0
Subtract \frac{244}{3} from both sides.
v=\frac{0±\sqrt{0^{2}-4\left(-\frac{244}{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{244}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\left(-\frac{244}{3}\right)}}{2}
Square 0.
v=\frac{0±\sqrt{\frac{976}{3}}}{2}
Multiply -4 times -\frac{244}{3}.
v=\frac{0±\frac{4\sqrt{183}}{3}}{2}
Take the square root of \frac{976}{3}.
v=\frac{2\sqrt{183}}{3}
Now solve the equation v=\frac{0±\frac{4\sqrt{183}}{3}}{2} when ± is plus.
v=-\frac{2\sqrt{183}}{3}
Now solve the equation v=\frac{0±\frac{4\sqrt{183}}{3}}{2} when ± is minus.
v=\frac{2\sqrt{183}}{3} v=-\frac{2\sqrt{183}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}