Solve for m
m=\frac{10}{19}\approx 0.526315789
Share
Copied to clipboard
\frac{3}{4}m-\frac{1}{3}+\frac{5}{6}m=\frac{1}{2}
Add \frac{5}{6}m to both sides.
\frac{19}{12}m-\frac{1}{3}=\frac{1}{2}
Combine \frac{3}{4}m and \frac{5}{6}m to get \frac{19}{12}m.
\frac{19}{12}m=\frac{1}{2}+\frac{1}{3}
Add \frac{1}{3} to both sides.
\frac{19}{12}m=\frac{3}{6}+\frac{2}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{19}{12}m=\frac{3+2}{6}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{19}{12}m=\frac{5}{6}
Add 3 and 2 to get 5.
m=\frac{5}{6}\times \frac{12}{19}
Multiply both sides by \frac{12}{19}, the reciprocal of \frac{19}{12}.
m=\frac{5\times 12}{6\times 19}
Multiply \frac{5}{6} times \frac{12}{19} by multiplying numerator times numerator and denominator times denominator.
m=\frac{60}{114}
Do the multiplications in the fraction \frac{5\times 12}{6\times 19}.
m=\frac{10}{19}
Reduce the fraction \frac{60}{114} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}