Solve for R
\left\{\begin{matrix}R=-\frac{400}{3-4g}\text{, }&g\neq \frac{3}{4}\\R\neq 0\text{, }&m=0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{3}{4}+\frac{100}{R}\text{, }&R\neq 0\\g\in \mathrm{R}\text{, }&m=0\text{ and }R\neq 0\end{matrix}\right.
Share
Copied to clipboard
\frac{3}{4}m\times 4R=mg\times 4R-m\times 4\times 100
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4R, the least common multiple of 4,R.
3mR=mg\times 4R-m\times 4\times 100
Multiply \frac{3}{4} and 4 to get 3.
3mR=mg\times 4R-m\times 400
Multiply 4 and 100 to get 400.
3mR-mg\times 4R=-m\times 400
Subtract mg\times 4R from both sides.
3mR-mg\times 4R=-400m
Multiply -1 and 400 to get -400.
3mR-4mgR=-400m
Multiply -1 and 4 to get -4.
\left(3m-4mg\right)R=-400m
Combine all terms containing R.
\left(3m-4gm\right)R=-400m
The equation is in standard form.
\frac{\left(3m-4gm\right)R}{3m-4gm}=-\frac{400m}{3m-4gm}
Divide both sides by 3m-4mg.
R=-\frac{400m}{3m-4gm}
Dividing by 3m-4mg undoes the multiplication by 3m-4mg.
R=-\frac{400}{3-4g}
Divide -400m by 3m-4mg.
R=-\frac{400}{3-4g}\text{, }R\neq 0
Variable R cannot be equal to 0.
\frac{3}{4}m\times 4R=mg\times 4R-m\times 4\times 100
Multiply both sides of the equation by 4R, the least common multiple of 4,R.
3mR=mg\times 4R-m\times 4\times 100
Multiply \frac{3}{4} and 4 to get 3.
3mR=mg\times 4R-m\times 400
Multiply 4 and 100 to get 400.
mg\times 4R-m\times 400=3mR
Swap sides so that all variable terms are on the left hand side.
mg\times 4R=3mR+m\times 400
Add m\times 400 to both sides.
4Rmg=3Rm+400m
The equation is in standard form.
\frac{4Rmg}{4Rm}=\frac{m\left(3R+400\right)}{4Rm}
Divide both sides by 4mR.
g=\frac{m\left(3R+400\right)}{4Rm}
Dividing by 4mR undoes the multiplication by 4mR.
g=\frac{3}{4}+\frac{100}{R}
Divide m\left(400+3R\right) by 4mR.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}