Evaluate
\frac{2}{7}\approx 0.285714286
Factor
\frac{2}{7} = 0.2857142857142857
Share
Copied to clipboard
\frac{3}{4}-\frac{1}{2}\left(\frac{10}{7}-\frac{2}{4}\right)
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{3}{4}-\frac{1}{2}\left(\frac{10}{7}-\frac{1}{2}\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{4}-\frac{1}{2}\left(\frac{20}{14}-\frac{7}{14}\right)
Least common multiple of 7 and 2 is 14. Convert \frac{10}{7} and \frac{1}{2} to fractions with denominator 14.
\frac{3}{4}-\frac{1}{2}\times \frac{20-7}{14}
Since \frac{20}{14} and \frac{7}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}-\frac{1}{2}\times \frac{13}{14}
Subtract 7 from 20 to get 13.
\frac{3}{4}-\frac{1\times 13}{2\times 14}
Multiply \frac{1}{2} times \frac{13}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}-\frac{13}{28}
Do the multiplications in the fraction \frac{1\times 13}{2\times 14}.
\frac{21}{28}-\frac{13}{28}
Least common multiple of 4 and 28 is 28. Convert \frac{3}{4} and \frac{13}{28} to fractions with denominator 28.
\frac{21-13}{28}
Since \frac{21}{28} and \frac{13}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{28}
Subtract 13 from 21 to get 8.
\frac{2}{7}
Reduce the fraction \frac{8}{28} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}