Solve for y
y = \frac{20}{9} = 2\frac{2}{9} \approx 2.222222222
Graph
Share
Copied to clipboard
\frac{3}{4}y+\frac{3}{4}\times 7+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
Use the distributive property to multiply \frac{3}{4} by y+7.
\frac{3}{4}y+\frac{3\times 7}{4}+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
Express \frac{3}{4}\times 7 as a single fraction.
\frac{3}{4}y+\frac{21}{4}+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
Multiply 3 and 7 to get 21.
\frac{3}{4}y+\frac{21}{4}+\frac{1}{2}\times 3y+\frac{1}{2}\left(-5\right)=\frac{9}{4}\left(2y-1\right)
Use the distributive property to multiply \frac{1}{2} by 3y-5.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y+\frac{1}{2}\left(-5\right)=\frac{9}{4}\left(2y-1\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y+\frac{-5}{2}=\frac{9}{4}\left(2y-1\right)
Multiply \frac{1}{2} and -5 to get \frac{-5}{2}.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y-\frac{5}{2}=\frac{9}{4}\left(2y-1\right)
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\frac{9}{4}y+\frac{21}{4}-\frac{5}{2}=\frac{9}{4}\left(2y-1\right)
Combine \frac{3}{4}y and \frac{3}{2}y to get \frac{9}{4}y.
\frac{9}{4}y+\frac{21}{4}-\frac{10}{4}=\frac{9}{4}\left(2y-1\right)
Least common multiple of 4 and 2 is 4. Convert \frac{21}{4} and \frac{5}{2} to fractions with denominator 4.
\frac{9}{4}y+\frac{21-10}{4}=\frac{9}{4}\left(2y-1\right)
Since \frac{21}{4} and \frac{10}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{4}\left(2y-1\right)
Subtract 10 from 21 to get 11.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{4}\times 2y+\frac{9}{4}\left(-1\right)
Use the distributive property to multiply \frac{9}{4} by 2y-1.
\frac{9}{4}y+\frac{11}{4}=\frac{9\times 2}{4}y+\frac{9}{4}\left(-1\right)
Express \frac{9}{4}\times 2 as a single fraction.
\frac{9}{4}y+\frac{11}{4}=\frac{18}{4}y+\frac{9}{4}\left(-1\right)
Multiply 9 and 2 to get 18.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{2}y+\frac{9}{4}\left(-1\right)
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{2}y-\frac{9}{4}
Multiply \frac{9}{4} and -1 to get -\frac{9}{4}.
\frac{9}{4}y+\frac{11}{4}-\frac{9}{2}y=-\frac{9}{4}
Subtract \frac{9}{2}y from both sides.
-\frac{9}{4}y+\frac{11}{4}=-\frac{9}{4}
Combine \frac{9}{4}y and -\frac{9}{2}y to get -\frac{9}{4}y.
-\frac{9}{4}y=-\frac{9}{4}-\frac{11}{4}
Subtract \frac{11}{4} from both sides.
-\frac{9}{4}y=\frac{-9-11}{4}
Since -\frac{9}{4} and \frac{11}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{9}{4}y=\frac{-20}{4}
Subtract 11 from -9 to get -20.
-\frac{9}{4}y=-5
Divide -20 by 4 to get -5.
y=-5\left(-\frac{4}{9}\right)
Multiply both sides by -\frac{4}{9}, the reciprocal of -\frac{9}{4}.
y=\frac{-5\left(-4\right)}{9}
Express -5\left(-\frac{4}{9}\right) as a single fraction.
y=\frac{20}{9}
Multiply -5 and -4 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}