Solve for x
x=0
Graph
Share
Copied to clipboard
\frac{3}{4}x+\frac{3}{4}\left(-8\right)-4x=2\left(x-3\right)-\frac{1}{2}x
Use the distributive property to multiply \frac{3}{4} by x-8.
\frac{3}{4}x+\frac{3\left(-8\right)}{4}-4x=2\left(x-3\right)-\frac{1}{2}x
Express \frac{3}{4}\left(-8\right) as a single fraction.
\frac{3}{4}x+\frac{-24}{4}-4x=2\left(x-3\right)-\frac{1}{2}x
Multiply 3 and -8 to get -24.
\frac{3}{4}x-6-4x=2\left(x-3\right)-\frac{1}{2}x
Divide -24 by 4 to get -6.
-\frac{13}{4}x-6=2\left(x-3\right)-\frac{1}{2}x
Combine \frac{3}{4}x and -4x to get -\frac{13}{4}x.
-\frac{13}{4}x-6=2x-6-\frac{1}{2}x
Use the distributive property to multiply 2 by x-3.
-\frac{13}{4}x-6=\frac{3}{2}x-6
Combine 2x and -\frac{1}{2}x to get \frac{3}{2}x.
-\frac{13}{4}x-6-\frac{3}{2}x=-6
Subtract \frac{3}{2}x from both sides.
-\frac{19}{4}x-6=-6
Combine -\frac{13}{4}x and -\frac{3}{2}x to get -\frac{19}{4}x.
-\frac{19}{4}x=-6+6
Add 6 to both sides.
-\frac{19}{4}x=0
Add -6 and 6 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -\frac{19}{4} is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}