Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{4}x+\frac{3}{4}\left(-3\right)-5x+2=3-\frac{1}{3}\left(2-5x\right)+32-4x
Use the distributive property to multiply \frac{3}{4} by x-3.
\frac{3}{4}x+\frac{3\left(-3\right)}{4}-5x+2=3-\frac{1}{3}\left(2-5x\right)+32-4x
Express \frac{3}{4}\left(-3\right) as a single fraction.
\frac{3}{4}x+\frac{-9}{4}-5x+2=3-\frac{1}{3}\left(2-5x\right)+32-4x
Multiply 3 and -3 to get -9.
\frac{3}{4}x-\frac{9}{4}-5x+2=3-\frac{1}{3}\left(2-5x\right)+32-4x
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
-\frac{17}{4}x-\frac{9}{4}+2=3-\frac{1}{3}\left(2-5x\right)+32-4x
Combine \frac{3}{4}x and -5x to get -\frac{17}{4}x.
-\frac{17}{4}x-\frac{9}{4}+\frac{8}{4}=3-\frac{1}{3}\left(2-5x\right)+32-4x
Convert 2 to fraction \frac{8}{4}.
-\frac{17}{4}x+\frac{-9+8}{4}=3-\frac{1}{3}\left(2-5x\right)+32-4x
Since -\frac{9}{4} and \frac{8}{4} have the same denominator, add them by adding their numerators.
-\frac{17}{4}x-\frac{1}{4}=3-\frac{1}{3}\left(2-5x\right)+32-4x
Add -9 and 8 to get -1.
-\frac{17}{4}x-\frac{1}{4}=3-\frac{1}{3}\times 2-\frac{1}{3}\left(-5\right)x+32-4x
Use the distributive property to multiply -\frac{1}{3} by 2-5x.
-\frac{17}{4}x-\frac{1}{4}=3+\frac{-2}{3}-\frac{1}{3}\left(-5\right)x+32-4x
Express -\frac{1}{3}\times 2 as a single fraction.
-\frac{17}{4}x-\frac{1}{4}=3-\frac{2}{3}-\frac{1}{3}\left(-5\right)x+32-4x
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{17}{4}x-\frac{1}{4}=3-\frac{2}{3}+\frac{-\left(-5\right)}{3}x+32-4x
Express -\frac{1}{3}\left(-5\right) as a single fraction.
-\frac{17}{4}x-\frac{1}{4}=3-\frac{2}{3}+\frac{5}{3}x+32-4x
Multiply -1 and -5 to get 5.
-\frac{17}{4}x-\frac{1}{4}=\frac{9}{3}-\frac{2}{3}+\frac{5}{3}x+32-4x
Convert 3 to fraction \frac{9}{3}.
-\frac{17}{4}x-\frac{1}{4}=\frac{9-2}{3}+\frac{5}{3}x+32-4x
Since \frac{9}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{4}x-\frac{1}{4}=\frac{7}{3}+\frac{5}{3}x+32-4x
Subtract 2 from 9 to get 7.
-\frac{17}{4}x-\frac{1}{4}=\frac{7}{3}+\frac{5}{3}x+\frac{96}{3}-4x
Convert 32 to fraction \frac{96}{3}.
-\frac{17}{4}x-\frac{1}{4}=\frac{7+96}{3}+\frac{5}{3}x-4x
Since \frac{7}{3} and \frac{96}{3} have the same denominator, add them by adding their numerators.
-\frac{17}{4}x-\frac{1}{4}=\frac{103}{3}+\frac{5}{3}x-4x
Add 7 and 96 to get 103.
-\frac{17}{4}x-\frac{1}{4}=\frac{103}{3}-\frac{7}{3}x
Combine \frac{5}{3}x and -4x to get -\frac{7}{3}x.
-\frac{17}{4}x-\frac{1}{4}+\frac{7}{3}x=\frac{103}{3}
Add \frac{7}{3}x to both sides.
-\frac{23}{12}x-\frac{1}{4}=\frac{103}{3}
Combine -\frac{17}{4}x and \frac{7}{3}x to get -\frac{23}{12}x.
-\frac{23}{12}x=\frac{103}{3}+\frac{1}{4}
Add \frac{1}{4} to both sides.
-\frac{23}{12}x=\frac{412}{12}+\frac{3}{12}
Least common multiple of 3 and 4 is 12. Convert \frac{103}{3} and \frac{1}{4} to fractions with denominator 12.
-\frac{23}{12}x=\frac{412+3}{12}
Since \frac{412}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
-\frac{23}{12}x=\frac{415}{12}
Add 412 and 3 to get 415.
x=\frac{415}{12}\left(-\frac{12}{23}\right)
Multiply both sides by -\frac{12}{23}, the reciprocal of -\frac{23}{12}.
x=\frac{415\left(-12\right)}{12\times 23}
Multiply \frac{415}{12} times -\frac{12}{23} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-4980}{276}
Do the multiplications in the fraction \frac{415\left(-12\right)}{12\times 23}.
x=-\frac{415}{23}
Reduce the fraction \frac{-4980}{276} to lowest terms by extracting and canceling out 12.