Solve for x
x<3
Graph
Share
Copied to clipboard
\frac{3}{4}x+\frac{3}{4}+x<6
Use the distributive property to multiply \frac{3}{4} by x+1.
\frac{7}{4}x+\frac{3}{4}<6
Combine \frac{3}{4}x and x to get \frac{7}{4}x.
\frac{7}{4}x<6-\frac{3}{4}
Subtract \frac{3}{4} from both sides.
\frac{7}{4}x<\frac{24}{4}-\frac{3}{4}
Convert 6 to fraction \frac{24}{4}.
\frac{7}{4}x<\frac{24-3}{4}
Since \frac{24}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{4}x<\frac{21}{4}
Subtract 3 from 24 to get 21.
x<\frac{21}{4}\times \frac{4}{7}
Multiply both sides by \frac{4}{7}, the reciprocal of \frac{7}{4}. Since \frac{7}{4} is positive, the inequality direction remains the same.
x<\frac{21\times 4}{4\times 7}
Multiply \frac{21}{4} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
x<\frac{21}{7}
Cancel out 4 in both numerator and denominator.
x<3
Divide 21 by 7 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}